## Lecture 1: Introduction to Proofs

Date: August 26, 2019.

Question: What is a proof?

Problem 1. Is $n^{2}+n+41$ prime, for any $n$ that is a non-negative integer?

Problem 2 (Euler's Conjecture). The equation

$$
a^{4}+b^{4}+c^{4}=d^{4}
$$

has no solution when $a, b, c, d$ are positive (non-zero) integers.

Proposition 1 (Fermat's Last Theorem). There are no positive integers $x, y, z$ such that

$$
x^{n}+y^{n}=z^{n}
$$

for some integer $n>2$.

Theorem 2 (Four Color Theorem). Every map can be colored with 4 colors, so that adjacent regions have different colors.

Conjecture: (Goldbach) Every even integer $>2$ is the sum of two primes.

Problem 3. Does the following program halt for all positive integer, initial values for $n$ ?

```
while ( }n\not=1\mathrm{ )
    if n is even
        n\leftarrown/2
    else
        n\leftarrow3n+1
```

