Lecture 32: Probability

Date: November 20, 2019.

Problem 1. Suppose we roll a (fair) black die and a (fair) white die. What is the probability that they sum to 7 or 11?

Probability Spaces. Consists of
Sample Space, a set S of possible outcomes of an experiment
Probability Distribution, a function $\operatorname{Pr}: S \rightarrow[0,1]$ that assigns a positive real weight proportion or probability to each outcome such that $\sum_{x \in S} \operatorname{Pr}[x]=1$.
An event $E \subseteq S$ is a subset of outcomes. The probability of an event E is $\operatorname{Pr}[E]=\sum_{x \in E} \operatorname{Pr}[x]$.
Problem 2. Suppose a biased coin, whose probability of showing heads is q, is tossed 30 times. What is the probabiity of seeing 15 heads?

A probability space is said to be uniform if $\operatorname{Pr}[x]=\operatorname{Pr}[y]$ for all outcomes x, y. Then $\operatorname{Pr}[E]=\frac{|E|}{|S|}$.
Problem 3. In a class containing 95 students, what is the probability that two people share the same birthday? Assume that all possible birthdays are equally likely.

Probability Rules from Set Theory.

- Sum Rule. If $E_{1}, E_{2}, \ldots E_{n}$ are pairwise disjoint sets, then

$$
\operatorname{Pr}\left[\bigcup_{i=1}^{n} E_{i}\right]=\sum_{i=1}^{n} \operatorname{Pr}\left[E_{i}\right]
$$

- Complement Rule. $\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]$.
- Difference Rule. $\operatorname{Pr}[B-A]=\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$.
- Inclusion-Exclusion Rule. $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$.
- Boole's Inequality. $\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$.
- Monotonicity Rule. If $A \subseteq B$ then $\operatorname{Pr}[A] \leq \operatorname{Pr}[B]$.

