LECTURE 32: PROBABILITY

Date: November 20, 2019.

Problem 1. Suppose we roll a (fair) black die and a (fair) white die. What is the probability that they sum to 7 or 11?

Probability Spaces. Consists of

Sample Space, a set S of possible outcomes of an experiment

Probability Distribution, a function $\Pr: S \to [0,1]$ that assigns a positive real weight proportion or probability to each outcome such that $\sum_{x \in S} \Pr[x] = 1$.

An **event** $E \subseteq S$ is a subset of outcomes. The probability of an event E is $\Pr[E] = \sum_{x \in E} \Pr[x]$.

Problem 2. Suppose a biased coin, whose probability of showing heads is q, is tossed 30 times. What is the probability of seeing 15 heads?

A probability space is said to be **uniform** if $\Pr[x] = \Pr[y]$ for all outcomes x, y. Then $\Pr[E] = \frac{|E|}{|S|}$.

Problem 3. In a class containing 95 students, what is the probability that two people share the same birthday? Assume that all possible birthdays are equally likely.

Probability Rules from Set Theory.

• Sum Rule. If $E_1, E_2, \dots E_n$ are pairwise disjoint sets, then

$$\Pr[\bigcup_{i=1}^n E_i] = \sum_{i=1}^n \Pr[E_i]$$

- Complement Rule. $Pr[\overline{A}] = 1 Pr[A]$.
- Difference Rule. $Pr[B A] = Pr[B] Pr[A \cap B]$.
- Inclusion-Exclusion Rule. $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B]$.
- Boole's Inequality. $Pr[A \cup B] \leq Pr[A] + Pr[B]$.
- Monotonicity Rule. If $A \subseteq B$ then $Pr[A] \leq Pr[B]$.