Lecture 30: Pigeonhole Principle

Date: November 15, 2019.

Subset Split Rule/Multinomial Coefficient. The expression

$$
\binom{k_{1}+k_{2}+\cdots+k_{m}}{k_{1}, k_{2}, \ldots k_{m}}=\frac{\left(k_{1}+k_{2}+\cdots+k_{m}\right)!}{k_{1}!k_{2}!\cdots k_{m}!}
$$

is the number of ways

- of forming m distinct subsets of sizes $k_{1}, k_{2}, \ldots k_{m}$ (respectively) out of a set of $\left(k_{1}+k_{2}+\cdots+k_{m}\right)$ elements;
- of the number of sequences formed from $l_{1}, l_{2}, \ldots l_{m}$, where the sequence has k_{1} copies of l_{1}, k_{2} copies of $l_{2}, \ldots k_{m}$ copies of l_{m} in the sequence.

Binomial Theorem. $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}$.
Problem 1. What is the coefficient of $b e^{3} k^{2} o^{2} p r$ in the expansion of $(b+e+k+o+p+r)^{10}$?

Pigeonhole Principle. If $|A|>|B|$ then for every function $f: A \rightarrow B$, there exist distinct $a, b \in A$ such that $f(a)=f(b)$.

Problem 2. Let S be any n-element set of integers. There are $a, b \in S$ such that $n-1 \mid(a-b)$.

Problem 3. A chess player trains for a championship by playing practice games over 77 days. She plays at least one game on any day, and plays a total of at most 132 games. Prove that no matter what her schedule of games looks like, there is a period of consecutive days in which she plays exactly 21 games.

Generalized Pigeonhole Principle. Let $B=\left\{b_{1}, b_{2}, \ldots b_{n}\right\}$. Let $q_{1}, q_{2}, \ldots q_{n} \in \mathbb{N}$ be such that $|A|>$ $q_{1}+q_{2}+\cdots+q_{n}$. For any function $f: A \rightarrow B$, for some $i,\left|\left\{a \in A \mid f(a)=b_{i}\right\}\right|>q_{i}$.

- If $|A|>k|B|$ then for every function $f: A \rightarrow B$, there are $k+1$ distinct elements of $A a_{1}, a_{2}, \ldots a_{k+1}$ such that for every $i, j, f\left(a_{i}\right)=f\left(a_{j}\right)$.

Problem 4. 1. How many cards should you pick from a standard deck of 52 cards to guarantee that at least 3 cards of the same suit are chosen?
2. How many cards should you pick from a standard deck of 52 cards to guarantee that at least 3 cards from the "Hearts" suit are picked?

Subsequence. For a sequence $a_{1}, a_{2}, \ldots a_{n}$, a subsequence is a sequence of the form $a_{i_{1}}, a_{i_{2}}, \ldots a_{i_{k}}$ where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$.

Theorem 1 (Erdös-Szekeres). Any sequence of $n^{2}+1$ distinct real numbers contains a subsequence of length at least $n+1$ that is either increasing or decreasing.

