LECTURE 13: MODULAR ARITHMETIC

Date: September 27, 2019.

Recap

- For integers $a, b, a \mid b$ iff there is an integer k such that b = ak.
- For integers n, d with $d \neq 0$, there exist unique integers qcnt(n, d) and rem(n, d) such that n = qcnt(n, d)d + rem(n, d).
- gcd(m, n) is the greatest among the common divisors of m and n. Can be computed efficiently using Euclid's algorithm.
- $a \equiv b \pmod{n}$ iff $n \mid (a b)$.
- $a \equiv b \pmod{n}$ iff $\operatorname{rem}(a, n) = \operatorname{rem}(b, n)$.

Equivalence Relation. A binary relation R on a set A (i.e., $R \subseteq A \times A$) is an equivalence relation iff

Reflexive. $\forall a \in A, (a, a) \in R.$

Symmetric. $\forall a, b \in A, (a, b) \in R \text{ IMPLIES } (b, a) \in R$

Transitive. $\forall a, b, c \in A$, $[(a, b) \in R \text{ AND } (b, c) \in R]$ IMPLIES $(a, c) \in R$.

Question 1. For each of the following relations on \mathbb{N} , identify whether they are reflexive, symmetric, and/or transitive. (a) \emptyset (b) id = { $(n, n) \mid n \in \mathbb{N}$ } (c) $\mathbb{N} \times \mathbb{N}$ (d) $\leq = {(n, m) \mid n \leq m}$

Equivalence Classes. For an equivalence relation R on A, and an element $a \in A$, the equivalence class of a (w.r.t. R) is

$$[a]_R = \{ b \in A \mid (a, b) \in R \}.$$

Proposition 1. Let A be any set, and let R be an arbitrary equivalence relation on A. For any $a, b \in A$, either $[a]_R \cap [b]_R = \emptyset$ or $[a]_R = [b]_R$.

Proposition 2. For any $n \in \mathbb{Z}$, congruence modulo n is an equivalence relation on \mathbb{Z} .

Proposition 3. For any integer n, congruence modulo n is a "congruence", i.e. if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then

 $a + c \equiv b + d \pmod{n}$ $ac \equiv bd \pmod{n}$

Remainder Arithmetic. To find the remainder on division by n of the result of a series of additions and multiplications, applied to some integers

- replace each integer oper and by its remainder on division by \boldsymbol{n}
- replace the result of each operation, by the remainder on division by n

Question 2. What is the remainder when $((4427)(173000) + 92567 + 3006^{23556})$ is divided by 7?

Extended GCD Algorithm

Theorem 4 (Bézout). For any integers a, b, gcd(a, b) is a linear combination of a and b, i.e., there are integers s, t such that gcd(a, b) = sa + tb.

To compute gcd(a, b), we can assume WLOG a, b are positive, and $a \ge b$. gcd(a,b) x = a; y = b;while (y > 0) r = rem(x,y) x = yy = r

return x