## Lecture 13: Modular Arithmetic

Date: September 27, 2019.

## Recap

- For integers $a, b, a \mid b$ iff there is an integer $k$ such that $b=a k$.
- For integers $n, d$ with $d \neq 0$, there exist unique integers $\operatorname{qcnt}(n, d)$ and $\operatorname{rem}(n, d)$ such that $n=$ $\mathrm{q} \subset \mathrm{nt}(n, d) d+\operatorname{rem}(n, d)$.
- $\operatorname{gcd}(m, n)$ is the greatest among the common divisors of $m$ and $n$. Can be computed efficiently using Euclid's algorithm.
- $a \equiv b(\bmod n)$ iff $n \mid(a-b)$.
- $a \equiv b(\bmod n) \mathrm{iff} \operatorname{rem}(a, n)=\operatorname{rem}(b, n)$.

Equivalence Relation. A binary relation $R$ on a set $A$ (i.e., $R \subseteq A \times A$ ) is an equivalence relation iff Reflexive. $\forall a \in A,(a, a) \in R$.

Symmetric. $\forall a, b \in A,(a, b) \in R \operatorname{IMPLIES}(b, a) \in R$
Transitive. $\forall a, b, c \in A,[(a, b) \in R$ AND $(b, c) \in R] \operatorname{IMPLIES}(a, c) \in R$.
Question 1. For each of the following relations on $\mathbb{N}$, identify whether they are reflexive, symmetric, and/or $\begin{array}{llll}\text { transitive. (a) } \emptyset & \text { (b) id }=\{(n, n) \mid n \in \mathbb{N}\} & \text { (c) } \mathbb{N} \times \mathbb{N} & \text { (d) } \leq=\{(n, m) \mid n \leq m\}\end{array}$

Equivalence Classes. For an equivalence relation $R$ on $A$, and an element $a \in A$, the equivalence class of $a$ (w.r.t. $R$ ) is

$$
[a]_{R}=\{b \in A \mid(a, b) \in R\} .
$$

Proposition 1. Let $A$ be any set, and let $R$ be an arbitrary equivalence relation on $A$. For any $a, b \in A$, either $[a]_{R} \cap[b]_{R}=\emptyset$ or $[a]_{R}=[b]_{R}$.

Proposition 2. For any $n \in \mathbb{Z}$, congruence modulo $n$ is an equivalence relation on $\mathbb{Z}$.

Proposition 3. For any integer $n$, congruence modulo $n$ is a"congruence", i.e. if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$ then

$$
\begin{aligned}
a+c & \equiv b+d(\bmod n) \\
a c & \equiv b d(\bmod n)
\end{aligned}
$$

Remainder Arithmetic. To find the remainder on division by $n$ of the result of a series of additions and multiplications, applied to some integers

- replace each integer operand by its remainder on division by $n$
- replace the result of each operation, by the remainder on division by $n$

Question 2. What is the remainder when $\left((4427)(173000)+92567+3006^{23556}\right)$ is divided by 7 ?

## Extended GCD Algorithm

Theorem 4 (Bézout). For any integers $a, b, \operatorname{gcd}(a, b)$ is a linear combination of $a$ and $b$, i.e., there are integers $s, t$ such that $\operatorname{gcd}(a, b)=s a+t b$.

To compute $\operatorname{gcd}(a, b)$, we can assume WLOG $a, b$ are positive, and $a \geq b$.

```
gcd(a,b)
    x = a; y = b;
    while (y > 0)
        r = rem(x,y)
        x = y
        y = r
```

    return x