Lecture 35: Infinite Sets

Date: December 4, 2019.

Comparing the sizes of Infinite sets.

Proposition 1. The following statements hold for finite sets A and B.

- 1. If there is a surjective function $f : A \to B$ then $|A| \ge |B|$.
- 2. If there is a injective function $f: A \to B$ then $|A| \leq |B|$.
- 3. If there is a bijective function $f : A \to B$ then |A| = |B|.

Cantor's Definition. For infinite sets A and B, we will say $|A| \leq |B|$ if there is a injective function $f: A \to B$.

• We will say |A| = |B| if there is a bijective function $f : A \to B$.

Proposition 2. For any (non-empty) sets A, B, and C the following properties hold.

- 1. If there are injective functions $f: A \to B$, and $g: B \to C$ then there is an injective function $h: A \to C$.
- 2. If there is an injective function $f: A \to B$ then there is a surjective function $g: B \to A$.

Theorem 3 (Cantor-Schröder-Bernstein). For any sets A and B, if there are injective functions $f : A \to B$ and $g : B \to A$ then there is a bijective function $h : A \to B$. **Problem 1.** Let $\mathbb{E} = \{n \in \mathbb{N} \mid n \equiv 0 \pmod{2}\}$. Show that $|\mathbb{E}| \leq |\mathbb{N}|$ and $|\mathbb{N}| \leq |\mathbb{E}|$.

Problem 2. Show that $|\mathbb{Z}| \leq |\mathbb{N}|$.

Problem 3. Show that $|\mathbb{N} \times \mathbb{N}| \leq |\mathbb{N}|$.

Problem 4. Show that $|\mathbb{Q}| \leq |\mathbb{N}|$.

Countable Sets. A (finite or infinite) set A is said to be **countable** if there is an injective function $f: A \to \mathbb{N}$. In other words, if $|A| \leq |\mathbb{N}|$.

Theorem 4 (Cantor). For any set A, $pow(A) \not\leq A$