Lecture 10: More Induction

Date: September 20, 2019.

Induction: To prove $\forall n \in \mathbb{N}$ such that $n \geq b, P(n)$

- Prove $P(b)$ [Base Case]
- Prove for all $n>b$, if $P(0)$ AND $P(1)$ AND \cdots AND $P(n-1)$ then $P(n)$ [Induction Step]

Proposition 1. For any $n \geq 0, a 2^{n} \times 2^{n}$ checker board with a "middle square" removed can be tiled using L-shaped triominoes.

Fibonacci Numbers: Numbers obtained by the following recursive process: $F(0)=0, F(1)=1$, and $F(n)=F(n-1)+F(n-2)$ when $n>1$.

Proposition 2. For any $n \geq 0, F(n)$ is even IFF $F(n+3)$ is even.

Theorem 3. Every integer greater than 1 is a product of primes.
(Weak) Induction: To prove $\forall n \in \mathbb{N}$ such that $n \geq b, P(n)$

- Prove $P(b)$ [Base Case]
- Prove for all $n>b$, if $P(n-1)$ then $P(n)$ [Induction Step]

