LECTURE 10: MORE INDUCTION

Date: September 20, 2019.

Induction: To prove $\forall n \in \mathbb{N}$ such that $n \ge b$, P(n)

- Prove P(b) [Base Case]
- Prove for all n > b, if P(0) AND P(1) AND \cdots AND P(n-1) then P(n) [Induction Step]

Proposition 1. For any $n \ge 0$, a $2^n \times 2^n$ checker board with a "middle square" removed can be tiled using L-shaped triominoes.

Fibonacci Numbers: Numbers obtained by the following recursive process: F(0) = 0, F(1) = 1, and F(n) = F(n-1) + F(n-2) when n > 1.

Proposition 2. For any $n \ge 0$, F(n) is even IFF F(n+3) is even.

Theorem 3. Every integer greater than 1 is a product of primes.

(Weak) Induction: To prove $\forall n \in \mathbb{N}$ such that $n \ge b$, P(n)

- Prove P(b) [Base Case]
- Prove for all n > b, if P(n-1) then P(n) [Induction Step]