Lecture 8: Finite Cardinality and Induction

Date: September 18, 2019.

Sequences on A : Ordered list of elements from A.

- Length two sequences $\left(a_{1}, a_{2}\right)$, i.e., pairs, i.e., element of $A \times A$
- Length n sequences $\left(a_{1}, a_{2}, \ldots a_{n}\right) \in A \times A \times \cdots A$

Bijective Functions:

- $f: A \rightarrow B$ is surjective/onto if range $(f)=f(A)=B=\operatorname{codomain}(f)$.
- $f: A \rightarrow B$ is injective/1-to- 1 if distinct elements get mapped to distinct elements.
- A function is bijective if it is injective/1-to-1 and surjective/onto.

Cardinality (of finite sets): $|X|=$ number of elements in X.
Example 1. $|\emptyset|=\quad|\{0,1,2,3\}|=\quad|\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}|=\quad|\{0,1,1,2,2\}|=$ $|\{0,1,2\} \times\{a, b, c\}|=\quad \mid$ sequences of length n over $\{0,1,2\} \mid=$

Proposition 1. The following statements hold for finite sets A and B.

1. If there is a surjective function $f: A \rightarrow B$ then $|A| \geq|B|$.
2. If there is a injective function $f: A \rightarrow B$ then $|A| \leq|B|$.
3. If there is a bijective function $f: A \rightarrow B$ then $|A|=|B|$.

Proposition 2. For a set A such that $|A|=n$, $|\operatorname{pow}(A)|=2^{n}$.

Induction: To prove $\forall n \in \mathbb{N} P(n)$

- Prove $P(0)$ [Base Case]
- Prove for all $n>0$, if $P(0)$ AND $P(1)$ AND \cdots AND $P(n-1)$ then $P(n)$ [Induction Step]

Proposition 3. Prove for all $n \in \mathbb{N}$

$$
1+2+\cdots+n=\frac{n(n+1)}{2}
$$

Proposition 4. Prove that for all $n \in \mathbb{N}, \sum_{i=0}^{n} i 2^{i}=(n-1) 2^{n+1}+2$.

Problem 1. All horses have the same color.
Proof by induction. Predicate $P(n)$: Any set of n-horses has the same color. To prove: $\forall n \in \mathbb{N}$ with $n \geq 1$, $P(n)$

Base Case: $P(1)$. In any set containing only one horse, all horses (namely the only one) have the same color. Induction Hypothesis: Assume that $P(1), P(2), \ldots P(n-1)$ are true.

Induction Step: Consider an arbitrary set H of $n+1$ horses.
Let $H=\left\{h_{1}, h_{2}, \ldots h_{n}\right\}$
Consider $H_{1}=\left\{h_{1}, h_{2}, \ldots h_{n-1}\right\}$ and $H_{2}=\left\{h_{2}, \ldots h_{n}\right\}$
Since $P(n-1)$ holds, all horses in H_{1} have the same color. Also all horses in H_{2} have the same color.
So color $\left(h_{1}\right)=\operatorname{color}\left(h_{2}\right)=\operatorname{color}\left(h_{3}\right)=\cdots=\operatorname{color}\left(h_{n}\right)$. Hence all horses in H have the same color.

