Lecture 18: (Undirected) Graphs

Date: October 11, 2019.

Definitions

Graph. A (simple, undirected) graph G consists of a non-empty set of vertices $V(G)$ and a set of edges $E(G)$. Each edge $e \in E(G)$ is a two element subset of $V(G)$, i.e., it is of the form $\{u, v\}$ where $u \neq v$.

- Vertices u and v are said to be end points of edge $\{u, v\}$.
- Edge $\{u, v\}$ is said to be incident to u and v.
- Vertices u and v are said to adjacent if $\{u, v\} \in E(G)$.
- The degree of vertex $v, \operatorname{deg}(v)$, is the number of edges incident on v.

Example Graphs.

Problem 1. On average, who has more opposite-gender partners: men or women?

Problem 2. Alice and Bob are describing a party they both attended where every person at the party shook hands with exactly 5 other people. However, Alice and Bob disagree on how many people were there at the party. Alice claims there were 126 people, while Bob claims there were 173 . Who among Alice and Bob is definitely wrong?

Isomorphism

Definition. An isomorphism between graphs G and H is a bijection $f: V(G) \rightarrow V(H)$ such that

$$
\{u, v\} \in E(G) \text { IFF }\{f(u), f(v)\} \in E(H)
$$

G and H are said to isomorphic if there is (some) isomorphism between G and H.

Question 1. Let G and H be isomorphic graphs. For each of the following statements decide if it is necessarily true. (a) $V(G)=V(H)$
(b) $|V(G)|=|V(H)|$
(c) $E(G)=E(H)$
(d) $|E(G)|=$ $|E(H)|$

