Lecture 8: Functions, Binary Relations, and Cardinality

Date: September 13, 2019.

Functions: A function $f : A \to B$ assigns to an element of one set the **domain** (in this case A), an element from another set the **codomain** (in this case B).

Example 1. inc : $\{0, 1, 2\} \to \{0, 1, 2\}$ where inc(0) = 1, inc(1) = 2, and inc(2) = 0.

dbl : $\mathbb{N} \to \mathbb{N}$ wheredbl(n) = 2n.

twoinc : $\mathbb{Z} \to \mathbb{Z}$ where twoinc(x) = x + 2.

sq : $\mathbb{R} \to \mathbb{R}$ where sq(x) = x^2.

Evaluation on Sets: Given a function $f : A \to B$ and $S \subseteq A$, $f(S) = \{f(n) \mid n \in S\} \subseteq B$.

Example 2. inc($\{0, 1\}$) =
dbl(\mathbb{N}) =

Range: The range of $f : A \to B$ is the set $f(A)$.

Surjective/Onto: $f : A \to B$ is surjective/onto if range(f) = $f(A) = B = \text{codomain}(f)$, i.e.,

$$\forall y \in B \exists x \in A (f(x) = y)$$

Question 1. Which of the following functions is surjective? (a) inc, (b) dbl, (c) twoinc, (d) sq

Injective/1-to-1: $f : A \to B$ is injective/1-to-1 if distinct elements get mapped to distinct elements, i.e.,

$$\forall x \in A \forall y \in A ((x \neq y) \implies (f(x) \neq f(y)))$$

Question 2. Which of the following functions is injective? (a) inc, (b) dbl, (c) twoinc, (d) sq

Composition: For functions $f : A \to B$ and $g : B \to C$, the composition $g \circ f$ is the function $A \to C$ defined as $(g \circ f)(x) = g(f(x))$, for all $x \in A$.

Problem 1. If $f : A \to B$ and $g : B \to C$ are injective then $g \circ f$ is injective.

Proposition 1. If $f : A \to B$, $g : B \to C$, and g is surjective then $g \circ f$ is surjective.

Bijective: A function that is injective/1-to-1 and surjective/onto.
Binary Relation: $R \subseteq A \times B$, where A is the domain, and B is the codomain.

Notation: $(a, b) \in R$ or aRb or $R(a, b)$

Example 3. For any function $f : A \to B$, $\text{graph}(f) = \{(x, f(x)) \mid x \in A\}$.

“less than” is a binary relation from \mathbb{R} to \mathbb{R}.

Consider the relation $\text{teaches} \subseteq \text{Instructor} \times \text{Courses}$. It may have tuples of the form $(\text{viswanathan}, \text{CS173BL1}), (\text{viswanathan}, \text{CS173AL1}), (\text{forbes}, \text{CS473}), (\text{chekuri}, \text{CS473})$...

Cardinality (of finite sets): $|X| = \text{number of elements in } X$.

Example 4. $|\emptyset| = |\{0, 1, 2, 3\}| = |\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}| = |\{0, 1, 1, 2, 2\}| = |\{0, 1, 2\} \times \{a, b, c\}| = $

Proposition 2. The following statements hold for finite sets A and B.

1. If there is a surjective function $f : A \to B$ then $|A| \geq |B|$.
2. If there is an injective function $f : A \to B$ then $|A| \leq |B|$.
3. If there is a bijective function $f : A \to B$ then $|A| = |B|$.

Proposition 3. For a set A such that $|A| = n$, $|\text{pow}(A)| = 2^n$.

2