Lecture 8: Functions, Binary Relations, and Cardinality

Date: September 13, 2019.

Functions: A function $f: A \rightarrow B$ assigns to an element of one set the domain (in this case A), an element from another set the codomain (in this case B).

Example 1. inc : $\{0,1,2\} \rightarrow\{0,1,2\}$ where $\operatorname{inc}(0)=1, \operatorname{inc}(1)=2$, and $\operatorname{inc}(2)=0$.
$\mathrm{dbl}: \mathbb{N} \rightarrow \mathbb{N}$ where $\operatorname{dbl}(n)=2 n$.
twoinc $: \mathbb{Z} \rightarrow \mathbb{Z}$ where $\operatorname{twoinc}(x)=x+2$.
$\mathrm{sq}: \mathbb{R} \rightarrow \mathbb{R}$ where $\mathrm{sq}(x)=x^{2}$.

Evaluation on Sets: Given a function $f: A \rightarrow B$ and $S \subset A, f(S)=\{f(n) \mid n \in S\} \subseteq B$.
Example 2. inc $(\{0,1\})=$
$\operatorname{dbl}(\mathbb{N})=$

Range: The range of $f: A \rightarrow B$ is the set $f(A)$.
Surjective/Onto: $f: A \rightarrow B$ is surjective/onto if range $(f)=f(A)=B=\operatorname{codomain}(f)$, i.e.,

$$
\forall y \in B \exists x \in A(f(x)=y)
$$

Question 1. Which of the following functions is surjective? (a) inc, (b) dbl, (c) twoinc, (d) sq

Injective/1-to-1: $f: A \rightarrow B$ is injective/1-to-1 if distinct elements get mapped to distinct elements, i.e.,

$$
\forall x \in A \forall y \in A((x \neq y) \text { IMPLIES }(f(x) \neq f(y)))
$$

Question 2. Which of the following functions is injective? (a) inc, (b) dbl, (c) twoinc, (d) sq

Composition: For functions $f: A \rightarrow B$ and $g: B \rightarrow C$, the composition $g \circ f$ is the function $A \rightarrow C$ defined as $(g \circ f)(x)=g(f(x))$, for all $x \in A$.
Problem 1. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are injective then $g \circ f$ is injective.

Proposition 1. If $f: A \rightarrow B, g: B \rightarrow C$, and g is surjective then $g \circ f$ is surjective.
Bijective: A function that is injective/1-to-1 and surjective/onto.

Binary Relation: $R \subseteq A \times B$, where A is the domain, and B is the codomain.

Notation: $(a, b) \in R$ or $a R b$ or $R(a, b)$
Example 3. For any function $f: A \rightarrow B$, $\operatorname{graph}(f)=\{(x, f(x)) \mid x \in A\}$.
"less than" is a binary relation from \mathbb{R} to \mathbb{R}.
Consider the relation teaches \subseteq Instructor \times Courses. It may have tuples of the form
...(viswanathan, CS173BL1), (viswanathan, CS173AL1), ...(forbes, CS473), (chekuri, CS473) ...

Cardinality (of finite sets): $|X|=$ number of elements in X.
Example 4. $|\emptyset|=\quad|\{0,1,2,3\}|=\quad|\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}|=\quad|\{0,1,1,2,2\}|=$ $|\{0,1,2\} \times\{a, b, c\}|=$

Proposition 2. The following statements hold for finite sets A and B.

1. If there is a surjective function $f: A \rightarrow B$ then $|A| \geq|B|$.
2. If there is a injective function $f: A \rightarrow B$ then $|A| \leq|B|$.
3. If there is a bijective function $f: A \rightarrow B$ then $|A|=|B|$.

Proposition 3. For a set A such that $|A|=n$, $|\operatorname{pow}(A)|=2^{n}$.

