LECTURE 8: FUNCTIONS, BINARY RELATIONS, AND CARDINALITY

Date: September 13, 2019.

Functions: A function $f : A \to B$ assigns to an element of one set the **domain** (in this case A), an element from another set the **codomain** (in this case B).

Example 1. inc : $\{0, 1, 2\} \rightarrow \{0, 1, 2\}$ where inc(0) = 1, inc(1) = 2, and inc(2) = 0.

 $\mathsf{dbl}: \mathbb{N} \to \mathbb{N}$ where $\mathsf{dbl}(n) = 2n$.

twoinc: $\mathbb{Z} \to \mathbb{Z}$ where twoinc(x) = x + 2.

 $\mathsf{sq}: \mathbb{R} \to \mathbb{R}$ where $\mathsf{sq}(x) = x^2$.

Evaluation on Sets: Given a function $f: A \to B$ and $S \subset A$, $f(S) = \{f(n) \mid n \in S\} \subseteq B$.

Example 2. $inc(\{0,1\}) = dbl(\mathbb{N}) =$

Range: The range of $f : A \to B$ is the set f(A).

Surjective/Onto: $f: A \to B$ is surjective/onto if range(f) = f(A) = B = codomain(f), i.e.,

 $\forall y \in B \; \exists x \in A(f(x) = y)$

Question 1. Which of the following functions is surjective? (a) inc, (b) dbl, (c) twoinc, (d) sq

Injective/1-to-1: $f: A \to B$ is injective/1-to-1 if distinct elements get mapped to distinct elements, i.e.,

 $\forall x \in A \ \forall y \in A((x \neq y) \text{ IMPLIES } (f(x) \neq f(y)))$

Question 2. Which of the following functions is injective? (a) inc, (b) dbl, (c) twoinc, (d) sq

Composition: For functions $f : A \to B$ and $g : B \to C$, the composition $g \circ f$ is the function $A \to C$ defined as $(g \circ f)(x) = g(f(x))$, for all $x \in A$.

Problem 1. If $f: A \to B$ and $g: B \to C$ are injective then $g \circ f$ is injective.

Proposition 1. If $f : A \to B$, $g : B \to C$, and g is surjective then $g \circ f$ is surjective.

Bijective: A function that is injective/1-to-1 and surjective/onto.

Binary Relation: $R \subseteq A \times B$, where A is the *domain*, and B is the *codomain*.

Notation: $(a, b) \in R$ or aRb or R(a, b)

Example 3. For any function $f : A \to B$, graph $(f) = \{(x, f(x)) \mid x \in A\}$.

"less than" is a binary relation from \mathbb{R} to \mathbb{R} .

Consider the relation teaches \subseteq Instructor \times Courses. It may have tuples of the form ... (viswanathan, CS173BL1), (viswanathan, CS173AL1), ... (forbes, CS473), (chekuri, CS473) ...

Cardinality (of finite sets): |X| = number of elements in X.

Example 4. $|\emptyset| = |\{0, 1, 2, 3\}| = |\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}\}| = |\{0, 1, 1, 2, 2\}| = |\{0, 1, 1, 2, 2\}| = |\{0, 1, 2\} \times \{a, b, c\}| = |\{0, 1, 2, 3\}| = |\{1, 2, 3\}| = |\{1, 2, 3\}| = |\{1, 2, 3\}| = |\{1, 2, 3\}| = |\{1, 2, 3\}| = |\{1, 3, 3\}| = |\{1,$

Proposition 2. The following statements hold for finite sets A and B.

- 1. If there is a surjective function $f: A \to B$ then $|A| \ge |B|$.
- 2. If there is a injective function $f : A \to B$ then $|A| \leq |B|$.
- 3. If there is a bijective function $f : A \to B$ then |A| = |B|.

Proposition 3. For a set A such that |A| = n, $|pow(A)| = 2^n$.