LECTURE 11: DIVISIBILITY

Date: September 23, 2019.

Divides Relation. For integers a, b, a divides b or a is a divisor of b or b is divisible by a or b is a multiple of a iff there is an integer k such that ak = b. Notation: $a \mid b$.

Question 1. Which of the following is necessarily true? (a) $173 \mid 0$ (b) $173 \mid 173$ (c) $1 \mid 173$ (d) $-1 \mid 173$ (e) $0 \mid 173$

Lemma 1. Let a, b, c, s, t be any integers.

- 1. If $a \mid b$ and $b \mid c$ then $a \mid c$.
- 2. If $a \mid b$ and $a \mid c$ then $a \mid sb + tc$.
- 3. If $c \neq 0$, $a \mid b$ if and only if $ca \mid cb$.

Theorem 2 (Division Theorem). Let n and d be any integers such that $d \neq 0$. Then there exist a unique pair of integers q and r such that

$$n = q \cdot d + r \text{ AND } 0 \le r \le |d|.$$

The number q is called the quotient (denoted qcnt(n,d)) and r is call the remainder (denoted rem(n,d)).

Problem 1. What are the quotient and remainder for the following pairs? (32, 5) (32, -5) (-32, 5)

Greatest Common Divisor. A common divisor of a and b is an integer that divides both a and b. The greatest among the common divisors is written as gcd(a, b).

Problem 2. What is the greatest common divisor for the following pairs? gcd(18, 24) gcd(8, 1) gcd(3, 0) gcd(-3, 0)

Euclid's GCD Algorithm

Lemma 3. For any a, b with $b \neq 0$, gcd(a, b) = gcd(b, rem(a, b))

To compute gcd(a, b), we can assume WLOG a, b are positive, and $a \ge b$. gcd(a,b)while (b > 0) r = rem(a,b) a = b b = rreturn a

Congruence Modulo *n*. *a* is congruent to *b* modulo *n* iff $n \mid (a - b)$ This is written as $a \equiv b \pmod{n}$.

Lemma 4. $a \equiv b \pmod{n}$ iff $\operatorname{rem}(a, n) = \operatorname{rem}(b, n)$.

Lemma 5. For any integers a, b, c, and n the following hold.

 $\begin{aligned} a &\equiv a \pmod{n} \\ a &\equiv b \pmod{n} \text{ IFF } b \equiv a \pmod{n} \\ (a &\equiv b \pmod{n} \text{ AND } b \equiv c \pmod{n}) \text{ IMPLIES } a \equiv c \pmod{n} \end{aligned}$