Lecture 11: Divisibility

Date: September 23, 2019.

Divides Relation. For integers a, b, a divides b or a is a divisor of b or b is divisible by a or b is a multiple of a iff there is an integer k such that $a k=b$. Notation: $a \mid b$.
Question 1. Which of the following is necessarily true? (a) $173 \mid 0$
(b) $173 \mid 173$
(c) $1 \mid 173$
(d) $-1 \mid 173 \quad$ (e) $0 \mid 173$

Lemma 1. Let a, b, c, s, t be any integers.

1. If $a \mid b$ and $b \mid c$ then $a \mid c$.
2. If $a \mid b$ and $a \mid c$ then $a \mid s b+t c$.
3. If $c \neq 0, a \mid b$ if and only if $c a \mid c b$.

Theorem 2 (Division Theorem). Let n and d be any integers such that $d \neq 0$. Then there exist a unique pair of integers q and r such that

$$
n=q \cdot d+r \text { AND } 0 \leq r \leq|d|
$$

The number q is called the quotient (denoted $\mathrm{q} \subset \mathrm{nt}(n, d)$) and r is call the remainder (denoted rem (n, d).
Problem 1. What are the quotient and remainder for the following pairs?
$(32,-5)$

Greatest Common Divisor. A common divisor of a and b is an integer that divides both a and b. The greatest among the common divisors is written as $\operatorname{gcd}(a, b)$.

Problem 2. What is the greatest common divisor for the following pairs?
$\operatorname{gcd}(18,24) \quad \operatorname{gcd}(8,1) \quad \operatorname{gcd}(3,0) \quad \operatorname{gcd}(-3,0)$

Euclid's GCD Algorithm

Lemma 3. For any a, b with $b \neq 0, \operatorname{gcd}(a, b)=\operatorname{gcd}(b, \operatorname{rem}(a, b))$

To compute $\operatorname{gcd}(a, b)$, we can assume WLOG a, b are positive, and $a \geq b$.

```
gcd(a,b)
    while (b > 0)
        r = rem(a,b)
        a = b
        b}=
    return a
```

Congruence Modulo n. a is congruent to b modulo n iff $n \mid(a-b)$ This is written as $a \equiv b(\bmod n)$.

Lemma 4. $a \equiv b(\bmod n)$ iff $\operatorname{rem}(a, n)=\operatorname{rem}(b, n)$.

Lemma 5. For any integers a, b, c, and n the following hold.

$$
\begin{aligned}
a & \equiv a(\bmod n) \\
a \equiv b(\bmod n) \text { IFF } b & \equiv a(\bmod n) \\
(a \equiv b(\bmod n) \text { AND } b \equiv c(\bmod n)) \text { IMPLIES } a & \equiv c(\bmod n)
\end{aligned}
$$

