Lecture 16: Directed Graphs

Date: October 7, 2019.

Directed Graphs. G consists of nonempty set $V(G)$ of vertices (or nodes) and a set $E(G)$ of edges. Here $E(G) \subseteq V(G) \times V(G)$. An edge (u, v) has source/tail u and target/head v. A directed graph $G = (V(G), E(G))$ is also called a digraph.

Degrees. For a vertex $v \in V(G)$ of digraph G

\[
\text{indeg}(v) = |\{(u, v) \mid u \in V(G)\}|
\]

\[
\text{outdeg}(v) = |\{(v, u) \mid u \in V(G)\}|
\]

Proposition 1. For any graph G, $\sum_{v \in V(G)} \text{indeg}(v) = \sum_{v \in V(G)} \text{outdeg}(v)$.

Walks. A walk is an alternating sequence of vertices and edges that begins with a vertex, ends with a vertex, and such that for every edge (u, v) in the walk, u is the element just before the edge, and v is the element just after the edge in the sequence. So it is of the form

$v_0(v_0, v_1)v_1(v_1, v_2)\cdots(v_{k-1}, v_k)v_k$.

The walk is said to start in v_0 and end in v_k, and is of length k.

Simplification. A walk is completely determined by just the (sub-)sequence of vertices or the (sub-)sequence of edges. So we will just use that when convenient.

Paths. Is a walk, where each vertex in the sequence is distinct.

Closed Walk. Is a walk that starts and ends in the same vertex.

Cycle. Is a closed walk of length > 0 where all vertices except the first and last vertex are distinct.

Combining walks. If a walk f ends in vertex v and a walk g starts at the same vertex v, then they can be merged to get a longer walk. We will denote the merged walk by $f \hat{\triangle} g$. Sometimes to emphasize the vertex where the walks merge, we will denote this by $f \hat{\triangle} v g$.

Note, that $|f \hat{\triangle} g| = |f| + |g|$.
Theorem 2. A shortest walk between two vertices is a path.

Distance. \(\text{dist}(u, v) \) is length of a shortest path from \(u \) to \(v \).

Proposition 3. For any graph \(G \) and vertices \(u, v, w \in V(G) \), \(\text{dist}(u, w) \leq \text{dist}(u, v) + \text{dist}(v, w) \).

Adjacency Matrix. A graph \(G \) with \(V(G) = \{v_0, v_1, \ldots, v_{n-1}\} \) can be represented by a matrix \(A_G \) where \((A_G)_{ij} = 1 \) if \((v_i, v_j) \in E(G)\) and is 0 otherwise.

Length \(k \)-walk counting matrix. For graph \(G \) with vertices \(\{v_0, v_1, \ldots, v_{n-1}\} \), a length \(k \) walk counting matrix is a \(n \times n \) matrix \(C \) such that \(C_{ij} = \) number of length \(k \) walks from \(v_i \) to \(v_j \).

Theorem 4. If \(C \) is a length \(k \) walk counting matrix, and \(D \) is a length \(m \) walk counting matrix, then \(CD \) is a length \(k + m \) walk counting matrix.