Lecture 16: Directed Graphs

Date: October 7, 2019.

Directed Graphs. G consists of nonempty set $V(G)$ of vertices (or nodes) and a set $E(G)$ of edges. Here $E(G) \subseteq V(G) \times V(G)$. An edge (u, v) has source/tail u and target/head v. A directed graph $G=(V(G), E(G))$ is also called a digraph.

Degrees. For a vertex $v \in V(G)$ of digraph G

$$
\begin{aligned}
& \operatorname{indeg}(v)=|\{(u, v) \mid u \in V(G)\}| \\
& \operatorname{outdeg}(v)=|\{(v, u) \mid u \in V(G)\}|
\end{aligned}
$$

Proposition 1. For any graph $G, \sum_{v \in V(G)} \operatorname{indeg}(v)=\sum_{v \in V(G)} \operatorname{outdeg}(v)$.

Walks. A walk is an alternating sequence of vertices and edges that begins with a vertex, ends with a vertex, and such that for every edge (u, v) in the walk, u is the element just before the edge, and v is the element just after the edge in the sequence. So it is of the form

$$
v_{0}\left(v_{0}, v_{1}\right) v_{1}\left(v_{1}, v_{2}\right) \cdots\left(v_{k-1}, v_{k}\right) v_{k}
$$

The walk is said to start in v_{0} and end in v_{k}, and is of length k.
Simplification. A walk is completely determined by just the (sub-)sequence of vertices or the (sub-)sequence of edges. So we will just use that when convenient.

Paths. Is a walk, where each vertex in the sequence is distinct.
Closed Walk. Is a walk that starts and ends in the same vertex.
Cycle. Is a closed walk of length >0 where all vertices except the first and last vertex are distinct.
Combining walks. If a walk \mathbf{f} ends in vertex v and a walk \mathbf{g} starts at the same vertex v, then they can be merged to get a longer walk. We will denote the merged walk by \mathbf{f} ^g. Sometimes to emphasize the vertex where the walks merge, we will denote this by $\mathbf{f} \widehat{v} \mathbf{g}$.

Note, that $\left|\mathbf{f}^{\wedge} \mathbf{g}\right|=|\mathbf{f}|+|\mathbf{g}|$.

Theorem 2. A shortest walk between two vertices is a path.

Distance. $\operatorname{dist}(u, v)$ is length of a shortest path from u to v.
Proposition 3. For any graph G and vertices $u, v, w \in V(G)$, $\operatorname{dist}(u, w) \leq \operatorname{dist}(u, v)+\operatorname{dist}(v, w)$.

Adjacency Matrix. A graph G with $V(G)=\left\{v_{0}, v_{1}, \ldots v_{n-1}\right\}$ can be represented by a matrix A_{G} where $\left(A_{G}\right)_{i j}=1$ if $\left(v_{i}, v_{j}\right) \in E(G)$ and is 0 otherwise.

Length k-walk counting matrix. For graph G with vertices $\left\{v_{0}, v_{1}, \ldots v_{n-1}\right\}$, a length k walk counting matrix is a $n \times n$ matrix C such that $C_{i j}=$ number of length k walks from v_{i} to v_{j}.

Theorem 4. If C is a length k walk counting matrix, and D is a length m walk counting matrix, then $C D$ is a length $k+m$ walk counting matrix.

