LECTURE 35: DIAGONALIZATION

Date: December 6, 2019.

Cantor's Definition. For infinite sets A and B, we will say $|A| \leq |B|$ if there is a injective function $f: A \to B$.

- If there is a surjective function $f: A \to B$ then $|A| \ge |B|$.
- We will say |A| = |B| if there is a bijective function $f : A \to B$.

Countable Sets. A (finite or infinite) set A is said to be **countable** if there is an injective function $f: A \to \mathbb{N}$. In other words, if $|A| \leq |\mathbb{N}|$.

Proposition 1. The sets \mathbb{Z} and $\mathbb{N} \times \mathbb{N}$ are countable.

Theorem 2 (Cantor). For any set A, $pow(A) \leq A$

Corollary 3. $pow(\mathbb{N})$ is not countable.

Computational Problems and Programs

Proposition 4. The number of programs is countable.

Computational Problem. Each problem is a function that demands a certain answer be computed in response to an input.

Decision Problems. Problems that demand a Boolean answer in response to an input. Since every input is a binary string, decision problems are functions of type $\{0,1\}^* \rightarrow \{0,1\}$.

Proposition 5. The number of decision problems is uncountable.