LECTURE 14: CRYPTOGRAPHY

Date: October 2, 2019.

Extended GCD Algorithm

Theorem 1 (Bézout). For any integers a, b, gcd(a, b) is a linear combination of a and b, i.e., there are integers s, t such that gcd(a, b) = sa + tb.

To compute gcd(a, b), we can assume WLOG a, b are positive, and $a \ge b$.

gcd(a,b) x = a; y = b; while (y > 0) r = rem(x,y) x = y y = r

return x

Question 1. Is it the case that if $ab \equiv ac \pmod{n}$ then $b \equiv c \pmod{n}$?

Proposition 2. For any integers a, b, c, n, if gcd(a, n) = 1 and $ab \equiv ac \pmod{n}$ then $b \equiv c \pmod{n}$.

Euler's Theorem

Relatively Prime: a is relatively prime to n if gcd(a, n) = 1. $\mathbb{Z}_n^* = \{a \mid 0 \le a < n \text{ AND } gcd(a, n) = 1\}$.

Euler's Function: $\phi(n) = |\mathbb{Z}_n^*|$

Proposition 3. 1. For a prime $p, \phi(p) = p - 1$.

2. For primes $p, q, \phi(pq) = (p-1)(q-1)$.

Theorem 4 (Euler). If gcd(k, n) = 1 then

$$k^{\phi(n)} \equiv 1 \pmod{n}$$

Proposition 5. For any (positive) integers a, b, c, n such that gcd(c, n) = 1 and $a \equiv b \pmod{\phi(n)}$ then $c^a \equiv c^b \pmod{n}$.

Public Key Encryption (RSA) [Rivest-Shamir-Adelman 76/Cocks 73]

Messages: Each letter corresponds to a number, and message is the number obtained by concatenating all these digits.

Receiver: Picks (large) primes p, q and $e \in \mathbb{Z}^*_{\phi(n)}$, where n = pq. Also computes d (secret key) such that $de \equiv 1 \pmod{\phi(n)}$. "Publishes" (n, e).

Sender: To send a message $M \in \mathbb{Z}_n^*$, compute $C = \operatorname{rem}(M^e, n)$ and send C.

Receiver: To decrypt message C, compute $rem(C^d, n)$. Now,

 $C^{d} \pmod{n} \equiv (M^{e})^{d} \pmod{n} \equiv M^{ed \pmod{\phi(n)}} \pmod{n} \equiv M \pmod{n}$