## Lecture 14: Cryptography

Date: October 2, 2019.

## Extended GCD Algorithm

Theorem 1 (Bézout). For any integers $a, b, \operatorname{gcd}(a, b)$ is a linear combination of $a$ and $b$, i.e., there are integers $s, t$ such that $\operatorname{gcd}(a, b)=s a+t b$.
To compute $\operatorname{gcd}(a, b)$, we can assume WLOG $a, b$ are positive, and $a \geq b$.

```
gcd(a,b)
    x = a; y = b;
    while (y > 0)
        r = rem(x,y)
        x = y
        y = r
```

    return x
    Question 1. Is it the case that if $a b \equiv a c(\bmod n)$ then $b \equiv c(\bmod n)$ ?
Proposition 2. For any integers $a, b, c, n$, if $\operatorname{gcd}(a, n)=1$ and $a b \equiv a c(\bmod n)$ then $b \equiv c(\bmod n)$.

## Euler's Theorem

Relatively Prime: $a$ is relatively prime to $n$ if $\operatorname{gcd}(a, n)=1 . \mathbb{Z}_{n}^{*}=\{a \mid 0 \leq a<n$ AND $\operatorname{gcd}(a, n)=1\}$.
Euler's Function: $\phi(n)=\left|\mathbb{Z}_{n}^{*}\right|$
Proposition 3. 1. For a prime $p, \phi(p)=p-1$.
2. For primes $p, q, \phi(p q)=(p-1)(q-1)$.

Theorem 4 (Euler). If $\operatorname{gcd}(k, n)=1$ then

$$
k^{\phi(n)} \equiv 1(\bmod n)
$$

Proposition 5. For any (positive) integers $a, b, c, n$ such that $\operatorname{gcd}(c, n)=1$ and $a \equiv b(\bmod \phi(n))$ then $c^{a} \equiv c^{b}(\bmod n)$.

Public Key Encryption (RSA) [Rivest-Shamir-Adelman 76/Cocks 73]
Messages: Each letter corresponds to a number, and message is the number obtained by concatenating all these digits.

Receiver: Picks (large) primes $p, q$ and $e \in \mathbb{Z}_{\phi(n)}^{*}$, where $n=p q$. Also computes $d$ (secret key) such that $d e \equiv 1(\bmod \phi(n))$. "Publishes" $(n, e)$.

Sender: To send a message $M \in \mathbb{Z}_{n}^{*}$, compute $C=\operatorname{rem}\left(M^{e}, n\right)$ and send $C$.
Receiver: To decrypt message $C$, compute rem $\left(C^{d}, n\right)$. Now,

$$
C^{d}(\bmod n) \equiv\left(M^{e}\right)^{d}(\bmod n) \equiv M^{e d}(\bmod \phi(n))(\bmod n) \equiv M(\bmod n)
$$

