Special Walks and Tours

Eulerian Tour of G is a closed walk that includes every edge exactly once.

Theorem 1. A connected graph has an Eulerian tour if and only if every vertex has an even degree.

Hamiltonian Cycle of G is a cycle that visits every vertex in G exactly once.

Bipartite Graphs

Definition. A graph G is **bipartite** if the set of vertices $V(G)$ can be partitioned into sets $L(G)$ and $R(G)$ such that every edge has one endpoint in $L(G)$ and the other endpoint in $R(G)$.

Proposition 2. Every cycle in a bipartite graph has even length.
Coloring

A k-coloring of a graph G is $c : V(G) \rightarrow \{1, 2, \ldots, k\}$ such that for any edge $\{u, v\} \in E(G)$, $c(u) \neq c(v)$.

Chromatic number. The least k such that G has a k-coloring is the chromatic number of G. It is denoted as $\chi(G)$.

Theorem 3. A graph G is bipartite if and only if $\chi(G) = 2$.

Theorem 4. Let G be a graph such that for every vertex u, $\deg(u) \leq n$. Then $\chi(G) \leq n + 1$.