LECTURE 23: BIG OH

Date: October 25, 2019.

Big Oh. For $f, g : \mathbb{N} \to \mathbb{N}$, we say that f = O(g) (*f* is **asymptotically at most as large** as *g*) iff there is c, k such that for every $n \ge k$, $f(n) \le cg(n)$.

Problem 1. Show that $\frac{(n-1)n}{2} = O(n^2)$ and $n^2 = O(\frac{(n-1)n}{2})$.

Proposition 1. For any k, and $a_0, a_1, \ldots a_k$, $\sum_{i=0}^k a_i x^i = O(x^k)$.

Proposition 2. If f = O(h) and g = O(h) then $f \pm g = O(h)$.

Common Tips and Pitfalls

Theta Notation. For function $f, g : \mathbb{N} \to \mathbb{N}$, $f = \Theta(g)$ iff f = O(g) and g = O(f).

Little Oh. For functions $f, g : \mathbb{N} \to \mathbb{N}$, we say f = o(g) (f is asymptotically smaller than g) iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Problem 2. Show that $n^2 = o(2^n)$.

Big Omega. For functions $f, g : \mathbb{N} \to \mathbb{N}$, we say $f = \Omega(g)$ (f is asymptotically at least as large as g) iff there are c, k such that for all $n \ge k$, $f(n) \ge cg(n)$.

Proposition 3. $f = \Omega(g)$ iff g = O(f).