Lecture 22: Analysis of Algorithms

Date: October 23, 2019.

```
input: array A[1 .. n] of integers input: array A[1 .. n] of integers
for j = 2 to n do
    m = A[j]
    if (m < A[j-1]) then
        A[j] = A[j-1]
        A[j-1] = m
return A[n]
```

Figure 1: Algorithm 1
Figure 2: Algorithm 2
Problem 1. Describe the computation of Algorithms 1 and 2 on input $A=[4,5,3,2,1]$. What problems do Algorithms 1 and 2 solve?

Measuring Efficiency of Algorithms.

Question 1. What is the running time of Algorithms 1 and 2?

Problem 2. Intel's P5 Pentium chip had a clock speed of 100 MHz . AMD's FX-8370 chip has a clock speed of 8.723 GHz .

1. How many steps does Algorithm 1 take on the worst case input of size n ?
2. How many steps does Algorithm 2 take on the worst case input of size n ?
3. How much time does Algorithm 1 running on a Pentium take on an input of size 10^{6} in the worst case?
4. How much time does Algorithm 2 running on a AMD FX- 8370 take on an input of size 10^{6} in the worst case?

Big Oh. For $f, g: \mathbb{N} \rightarrow \mathbb{N}$, we say that $f=O(g)$ iff there is c, k such that for every $n \geq k, f(n) \leq c g(n)$.
Problem 3. Show that $\frac{(n-1) n}{2}=O\left(n^{2}\right)$ and $n^{2}=O\left(\frac{(n-1) n}{2}\right)$.

Proposition 1. For any k, and $a_{0}, a_{1}, \ldots a_{k}, \sum_{i=0}^{k} a_{i} x^{i}=O\left(x^{k}\right)$.

Theta Notation. For function $f, g: \mathbb{N} \rightarrow \mathbb{N}, f=\Theta(g)$ iff $f=O(g)$ and $g=O(f)$.
Little Oh. For functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$, we say $f=o(g)(f$ is asymptotically smaller than $g)$ iff

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

Problem 4. Show that $n^{2}=o\left(2^{n}\right)$.

