CS 173 Discussion 6: Number Theory and Invariant Method

Date: October 3/4, 2019.

Problem 1. A robot named Wall-E wanders around a two-dimensional grid. He starts out at $(0,0)$ and is allowed to take four different types of steps.

1. $(+2,-1)$
2. $(+1,-2)$
3. $(+1,+1)$
4. $(-3,0)$

For example, Wall-E might walk as follows.

$$
(0,0) \xrightarrow{1}(2,-1) \xrightarrow{3}(3,0) \xrightarrow{2}(4,-2) \xrightarrow{4}(1,-2) \cdots
$$

Wall-E's true love, the fashionable and high-powered robot, Eve, awaits in $(0,2)$.
(a) Describe a state machine model of this problem.
(b) Will Wall-E ever find his true love? If yes, find a path from Wall-E to Eve. If not, use the Invariant Principle to prove no such path exists.

Problem 2. Recall that we showed that for any n, congruence modulo n is an equivalence relation. What is the equivalence class of 8 modulo 3 ?

Problem 3. Prove or disprove each of the following statements.

1. For any integers d, ℓ, m, and n, if $\ell \equiv m(\bmod n)$ then $d^{\ell} \equiv d^{m}(\bmod n)$.
2. For any integers p, q, r, if $\operatorname{gcd}(p, q)=1$ and $\operatorname{gcd}(q, r)=1$ then $\operatorname{gcd}(p, r)=1$.
3. For any non-zero integers p, q, r, if $\operatorname{gcd}(p, q)=1$ and $\operatorname{gcd}(p, q r)=1$ then $\operatorname{gcd}(p, r)=1$.
