CS 173 Discussion 5: Induction

Date: September 26/27, 2019.

Problem 1. Prove the following formulas using induction.

1. $\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
2. $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$

Problem 2. Consider the following induction proof showing for all $n \geq 0,2+3+\cdots+n=\frac{n(n+1)}{2}$.
Proof: We use induction. Let $P(n)$ be the proposition that $2+3+\cdots+n=\frac{n(n+1)}{2}$.
Base Case. $P(0)$ is true since both sides of the equation of $P(0)$ are 0 , as the sum with no terms is zero.
Induction Hypothesis. For $n>0$, assume that $P(0), P(1), \ldots P(n-1)$ hold.
Induction Step. Observe that

$$
\begin{aligned}
2+3+\cdots+(n-1)+n & =(2+3+\cdots+(n-1))+n \\
& =\frac{(n-1)(n-1+1)}{2}+n \\
& =\frac{n((n-1)+2)}{2}=\frac{n(n+1)}{2}
\end{aligned}
$$

Therefore by the principle of induction $\forall n \in \mathbb{N} . P(n)$ is true.
What is the error in the above proof?

