CS 173, Fa Examlet 1		NI	NETID:									
FIRST:					\mathbf{L}_{I}	AST:						
Discussion:	Thursday	$\overline{2}$	3	4	5	Friday	9	10	11	12	1	2

(15 points) Recall that a phone lattice is a state diagram representing sequences of letters. Each edge in a phone lattice has a single letter on it. In a "deterministic" state diagram, if you look at any state s and any letter a, there is never more than one edge labelled a leaving state s.

Draw a deterministic phone lattice representing exactly the following set of words, using no more than 17 states and, if you can, no more than 15.

aloft, abaft, adrift, apart urgh, uurgh, uurgh, ... [i.e. one or more u's at start of word]

FIRSI:	FIRST:					LAST:							
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2	
(5 points) An RC us a real value in thur answer.													
(10 points) Check	the (single) bo	x that	t best	char	acte	rizes each it	em.						
Any function from a corresponding Computes it.			true	e)		false		not k	nown				
Suppose A is a normalization $\mathbb{P}(A)$ is large	- •	t	rue		:	false	t	rue foi	finite	sets			
The set of all (fine graphs, where ison are treated as the	morphic graphs	fin	nite		(countably in	nfinite	9	ι	ıncoun	table		
	1			7			Г	_			_		
The complex num	nbers	finite			cour	ntably infini	ite		unce	ountabl	e		

CS 173, Fall 2015 Review, Part A	NETID:
FIRST:	LAST:
Discussion: Thursday (5 points) Check all boxes that of	$f 2$ $f 3$ $f 4$ $f 5$ $f Friday$ $f 9$ $f 10$ $f 11$ $f 12$ $f 1$ $f 2$ correctly characterize this relation on the set $\{A,B,C,D,E,F\}$
$ \begin{array}{cccc} A & \longrightarrow & C & & E \\ \downarrow & & \downarrow & & \downarrow \\ B & \longrightarrow & D & & F \end{array} $	Reflexive:
(10 points) Check the (single) box	that best characterizes each item.
$\sum_{k=3}^{n} k^7 = \sum_{p=1}^{n-2} p^9 \Box$	$\sum_{p=1}^{n-2} k^7 \square \qquad \sum_{p=1}^{n-2} k^9 \square \qquad \sum_{p=1}^{n-2} (p+2)^7 \square$
For any real number x , if $x > 10$, then $x^2 > 0$.	true false undefined
\emptyset is an element of $\mathbb Z$	a subset of \mathbb{Z} both neither
Suppose a graph with 12 vertices a exactly 5 colors. By the pigeonh color appears on at least two vertices	ole principle, every
$f: \mathbb{N} \to \mathbb{R},$ $f(x) = x^2 + 2$ onto	not onto not a function

CS 173, Fall 2015 Review, Part B	NI	NETID:									
FIRST:				\mathbf{L}_{A}	AST:						
Discussion: Thursday	2	3	4	5	Friday	9	10	11	12	1	2
(5 points) Is the cycle graph C_{1}	7 a su	bgrap	h of t	he v	wheel graph	W_{23} ?	Brief	ly justi	ify you	r answ	eı
(10 points) Check the (single) be	ox tha	t best	char	acte	rizes each it	tem.					
The chromatic number of a graph with maximum vertex degree D		D $D +$	1		$= D + 1$ $\geq D + 1$	1					
If $f: \mathbb{R} \to \mathbb{P}(\mathbb{Z})$ then $f(17)$ is	(one oi	a more		teger	а		f integ power			
A full m -ary tree with i internodes has $mi + 1$ nodes total.	nal	alw	ays		some	times		r	never		
$n!$ $O(2^n)$		$\Theta(1)$	2^n) [neither o	of thes	se				
Problems in NP need exponential time pro	ven tr	rue []	proven false	e]	not k	nown		