CS 173, Fall 2015 Examlet 13, Part A			ETI	D:								
FIRST:					\mathbf{L}_{I}	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

(15 points) Recall that a phone lattice is a state diagram representing sequences of letters. Each edge in a phone lattice has a single letter on it. In a "deterministic" state diagram, if you look at any state s and any letter a, there is never more than one edge labelled a leaving state s.

Draw a deterministic phone lattice representing exactly the following set of words, using no more than 15 states and, if you can, no more than 13.

moodle, moon, doodle, ogle moo, mooo, mooo, ... [i.e. m followed by two or more o's]

CS 173, Fall 2015 Examlet 13, Part B		NETID:									
FIRST:					AST:						
Discussion: Thursday	2	3	4	5	Friday	9	10	11	12	1	2
(5 points) A "red/black tree" is the set of all red/black trees count									"red"	or "l	black."
(10 points) Check the (single) bo	x that	best	z char	acte	erizes each it	em.					
The set of all intervals $[a, b]$ of the real line.	fini	te		(countably inf	inite		u	ncount	able	
The set of board configurations for the game of chess.	fin	ite			countably in	finite	е	u	ıncoun	table	
Every function from $\{1, 2, 3\}$ to the reals has a finite formula.	he	true	e		false		not k	nown			
The set of all (finite, unlabelled) graphs, where isomorphic graphs are treated as the same object.	fin	ite			countably in	$ ext{finite}$	е] u	ıncoun	table	
$\mathbb{P}(\mathbb{N})$ finite		co	untab	olv i	infinite		uncou	ıntable			

Is

CS 173, Fall 2015 Review, Part A	NETII	D:					
FIRST:		L	AST:				
Discussion: Thurse	•	4 5	Friday	9 10			1 :
(5 points) Check all boxes	that correctly c	haracteriz	ze this relati	ion on the	e set $\{A,$	B, C, D,	E, F
$\begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \end{pmatrix} \qquad \begin{pmatrix} \\ \\ \\ \\ \\ \\ \end{pmatrix} \qquad \begin{pmatrix} \\ \\ \\ \\ \\ \\ \end{pmatrix}$	E	Reflexiv	ve:	Irreflexiv	re:		
		Symme	tric:	Antisym	metric:		
B D	F	Transit	ive:				
(10 points) Check the (single	e) box that best	characte	rizes each it	em.			
For any positive integers p , if $p \equiv q \pmod{k}$, then $p^2 \equiv$			true	false	е		
$\forall x \in \mathbb{R}$, if $\pi = 3$, then $x < 2$ (π is the familiar constant.)	c0.		false		undefine	ed	
$\sum_{k=0}^{n-1} 2^k \qquad \qquad 2^n - 2 \boxed{}$			$2^{n-1} - 1$		$2^{n+1} - 1$		
If $f: \mathbb{Z} \to \mathbb{R}$ is a function su $f(x) = 2x$ then the set of all integers is the of f .		domain image		co-domair	ı 📗		

not one-to-one

not a function

 $f: \mathbb{R} \to \mathbb{Z},$
f(x) = x

one-to-one

CS 173, Fall 2015 Review, Part B		NETID:								
FIRST:				LAST:						
Discussion: Thursday (5 points) Is the graph C_{10} bip	•	3 Brie	4 efly jus	5	Friday your answe	9	10	11	12	1
(10 points) Check the (single) h	oox tha	t bes	t char	acter	rizes each it	em.				
Suppose I want to estimate $\frac{103}{20}$ 3 is			upper ower l				n exac			
The chromatic number of the 3-dimensional hypercube Q_3		1 [2		3		4		
Total number of leaves in a 3-ary tree of height h	3^h		- 1)		$\leq 3^h$ 3^{h+1}					
T(1) = d $T(n) = 2T(n-1) + c$	$\Theta(n)$		$\Theta(n^2)$			ı		$\Theta(2^n)$		
The running time of mergesort	is $O(n^3)$	³).	Trı	ue [Fai	lse				