CS 173, Fall 2015 Examlet 9, Part B

NETID:

FIRST:
LAST:
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, c, and d. Circle the trees that match the grammar.

$$
\begin{aligned}
& S \rightarrow b N a|a N c| a \\
& N \rightarrow S S \mid d
\end{aligned}
$$

2. (4 points) Check the (single) box that best characterizes each item.

The level of the root node in a tree of height h.

$1 \square$

$h \quad h+1 \quad \square$
$\sum_{k=0}^{n+1} 2^{k} 2^{n+1}+1 \quad \square \quad 2^{n+2}-1 \quad \square \quad 2^{n+2}-2 \quad \square \quad 2^{n+1}-1 \quad \square$

CS 173, Fall 2015 Examlet 9, Part B

NETID:

FIRST:
LAST:

Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (8 points) Here is a grammar, with start variable S and terminals a and c. Circle the trees that match the grammar.

$$
S \rightarrow S S a|c S| c c
$$

S
2. (4 points) Check the (single) box that best characterizes each item.

The number of nodes in a

$$
\begin{array}{lll}
\geq 2^{h} & \square & =2^{h+1}-1 \\
\leq 2^{h+1}-1 & \square & \geq 2^{h+1}-1 \\
\hline
\end{array}
$$ full complete binary tree of height h

Total number of leaves in a 3 -ary tree of height h

$$
\begin{array}{llll}
3^{h} & \square & \leq 3^{h} & \square \\
\frac{1}{2}\left(3^{h+1}-1\right) & \square & 3^{h+1}-1 & \square
\end{array}
$$

CS 173, Fall 2015 Examlet 9, Part B

NETID:

FIRST:
LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (8 points) Here is a grammar with start symbol S and terminals symbols a, b, and c. Circle the trees that match the grammar.

$$
S \rightarrow S S|a b c| a
$$

/ $\$
a b c

2. (4 points) Check the (single) box that best characterizes each item.

$$
\sum_{k=0}^{n-1} 2^{k} \quad 2^{n}-2 \quad \square \quad 2^{n}-1 \quad \square \quad 2^{n-1}-1 \quad \square \quad 2^{n+1}-1 \quad \square
$$

The number of nodes in a

CS 173, Fall 2015 Examlet 9, Part B

NETID:

FIRST:

LAST:
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (8 points) Consider the following grammar G

$$
S \rightarrow b S a|a S b| c
$$

S is the only start symbol. The terminal symbols are a, b, and c.
Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

$$
b a b c a b a \quad b b a c b a b
$$

2. (4 points) Check the (single) box that best characterizes each item.

A binary tree of height h has at least $2^{h}-1$ vertices (nodes).
n edges \square $n-1$ edges $\quad \square$
$\leq n$ edges \square
A tree with n nodes has

$$
n / 2 \text { edges } \quad \square \quad \log n \text { edges } \quad \square
$$

CS 173, Fall 2015 Examlet 9, Part B

NETID:

FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (8 points) Consider the following grammar G

$$
S \rightarrow b S a|b S b| c
$$

S is the only start symbol. The terminal symbols are a, b, and c.
Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.
$b a b c b b b \quad b b c a b a b$
2. (4 points) Check the (single) box that best characterizes each item.

Number of nodes at level k in a full complete binary tree.

The chromatic number of a full 3 -ary tree
1

2

$3 \square$
$\leq 3 \quad \square$
can't tell \square

CS 173, Fall 2015 Examlet 9, Part B

NETID:
FIRST:
Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1\end{array} 2$

1. (8 points) Consider the following grammar G

$$
\begin{aligned}
& S \rightarrow a S \mid a N \\
& N \rightarrow N N|b c| c c
\end{aligned}
$$

S is the only start symbol. The terminal symbol are a, b, and c.
Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

$$
a b c c c a \quad a c c b c
$$

2. (4 points) Check the (single) box that best characterizes each item.

$$
\sum_{k=1}^{n+1} 2^{k} \quad 2^{n+1}+1 \quad 2^{n+2}-1 \quad \square \quad 2^{n+2}-2 \quad \square \quad 2^{n}-2 \quad \square
$$

A full m-ary tree with i internal nodes has $m i+1$ nodes total.

$$
\text { always } \quad \square
$$

never \square

