CS 173, Fa Examlet 9,	ll 2015 Part B	NF	ETI	D:]			
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, c, and d. Circle the trees that match the grammar.

CS 173, Fai Examlet 9,	ll 2015 Part B	NF	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (8 points) Here is a grammar, with start variable S and terminals a and c. Circle the trees that match the grammar.

CS 173, Fai Examlet 9,	ll 2015 Part B	NF	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (8 points) Here is a grammar with start symbol S and terminals symbols a,b, and c. Circle the trees that match the grammar.

$$S \rightarrow S S \mid a b c \mid a$$

CS 173, Fa Examlet 9,	ll 2015 Part B	NETID:]				
FIRST:					AST:							
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (8 points) Consider the following grammar G

 $S \to b \ S \ a \ \mid \ a \ S \ b \ \mid \ c$

S is the only start symbol. The terminal symbols are a, b, and c.

Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

b a b c a b a c b a b

A binary tree of height h ha least $2^h - 1$ vertices (nodes).	s at tru	e	false		
Λ tree with <i>n</i> nodes has	n edges		n-1 edges	$\leq n \text{ edges}$	
A tree with n nodes has	n/2 edges		$\log n$ edges		

CS 173, Fa Examlet 9,	ll 2015 , Part B	NETID:										
FIRST:					$\mathbf{L}_{\mathbf{z}}$	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (8 points) Consider the following grammar G

 $S \rightarrow b \ S \ a \ \mid \ b \ S \ b \ \mid \ c$

S is the only start symbol. The terminal symbols are a, b, and c.

Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

1. (8 points) Consider the following grammar G

 $\begin{array}{lcl} S \rightarrow & a \; S & \mid & a \; N \\ N \rightarrow & N \; N & \mid & b \; c \; \mid \; c \; c \end{array}$

S is the only start symbol. The terminal symbol are a, b, and c.

Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

