CS 173, Fall 2015 Examlet 8, Part B

NETID:

FIRST:

LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(10 points) Suppose we have a function g defined (for n a power of 2) by

$$
\begin{aligned}
& g(1)=3 \\
& g(n)=4 g(n / 2)+n \text { for } n \geq 2
\end{aligned}
$$

Your partner has already figured out that

$$
g(n)=4^{k} g\left(n / 2^{k}\right)+\sum_{p=0}^{k-1} n 2^{p}
$$

Finish finding the closed form for $g(n)$ assuming that n is a power of 2 . Show your work and simplify your answer. Recall that $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$.

Solution: To find the value of k at the base case, set $n / 2^{k}=1$. Then $n=2^{k}$, so $k=\log _{2} n$. Notice also that $4^{\log _{2} n}=4^{\log _{4} n \log _{4} 2}=n^{2}$.

Substituting this into the above, we get

$$
\begin{aligned}
g(n) & =4^{k} g\left(n / 2^{k}\right)+n \sum_{p=0}^{k-1} 2^{p} \\
& =4^{\log _{2} n} \cdot 3+n \sum_{p=0}^{\log _{2} n-1} 2^{p} \\
& =3 n^{2}+n\left(2^{\log _{2} n}-1\right) \\
& =3 n^{2}+n(n-1)
\end{aligned}
$$

CS 173, Fall 2015 Examlet 8, Part B

NETID:

FIRST:
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (8 points) Suppose we have a function g defined (for n a power of 3) by

$$
\begin{aligned}
g(9) & =5 \\
g(n) & =3 g(n / 3)+n \text { for } n \geq 27
\end{aligned}
$$

Your partner has already figured out that

$$
g(n)=3^{k} g\left(n / 3^{k}\right)+k n
$$

Finish finding the closed form for g. Show your work and simplify your answer.

Solution:

To find the value of k at the base case, set $n / 3^{k}=9$. Then $n=3^{k+2}$, so $k+2=\log _{3} n$, so $k+2=\log _{3} n-2$ Substituting this into the above, we get:

$$
\begin{aligned}
g(n) & =3^{\log _{3} n-2} g(9)+\left(\log _{3} n-2\right) n \\
& \left.=3^{\log _{3} n} 3^{-2} 5+n \log _{3} n-2 n\right) \\
& =\frac{5}{9} n+n \log _{3} n-2 n=n \log _{3} n-\frac{15}{9} n
\end{aligned}
$$

2. (2 points) Check the (single) box that best characterizes each item.

The number of nodes in the 4-dimensional hypercube Q_{4}

$32 \quad \square$
64 \square

CS 173, Fall 2015 Examlet 8, Part B

NETID:

FIRST:
LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (8 points) Suppose we have a function g defined (for n a power of 2) by

$$
\begin{aligned}
& g(1)=c \\
& g(n)=4 g(n / 2)+n \text { for } n \geq 2
\end{aligned}
$$

Express $g(n)$ in terms of $g\left(n / 2^{3}\right)$ (where $n \geq 8$). Show your work and simplify your answer.

Solution:

$$
\begin{aligned}
g(n) & =4 g(n / 2)+n \\
& =4\left(4 g\left(n / 2^{2}+n / 2\right)+n\right. \\
& =4\left(4\left(4 g\left(n / 2^{3}\right)+n / 2^{2}\right)+n / 2\right)+n \\
& =4^{3} g\left(n / 2^{3}\right)+n\left(2^{2}+2+1\right) \\
& =4^{3} g\left(n / 2^{3}\right)+7 n
\end{aligned}
$$

2. (2 points) Suppose that $f: \mathbb{N} \rightarrow \mathbb{N}$ is such that $f(n)=n$!. Give a recursive definition of f Solution:
$f(0)=1$, and $f(n)=n f(n-1)$ for $n \geq 1$.
You could also have used $f(n+1)=(n+1) f(n)$ for $n \geq 0$.

CS 173, Fall 2015 Examlet 8, Part B

NETID:

FIRST:

LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(10 points) Suppose we have a function F defined (for n a power of 3) by

$$
\begin{aligned}
& F(1)=5 \\
& F(n)=3 F(n / 3)+7 \text { for } n \geq 3
\end{aligned}
$$

Your partner has already figured out that

$$
F(n)=3^{k} F\left(n / 3^{k}\right)+7 \sum_{p=0}^{k-1} 3^{p}
$$

Finish finding the closed form for F. Show your work and simplify your answer. Recall the following useful closed form (for $r \neq 1$): $\sum_{k=0}^{n} r^{k}=\frac{r^{n+1}-1}{r-1}$

Solution:

To find the value of k at the base case, set $n / 3^{k}=1$. Then $n=3^{k}$, so $k=\log _{3} n$. Substituting this into the above, we get

$$
\begin{aligned}
F(n) & =3^{\log _{3} n} \cdot 5+7 \sum_{p=0}^{\log _{3} n-1} 3^{p} \\
& =5 n+7 \frac{3^{\log _{3} n}-1}{3-1} \\
& =5 n+7 \frac{n-1}{3-1}=5 n+\frac{7(n-1)}{2}
\end{aligned}
$$

CS 173, Fall 2015 Examlet 8, Part B

NETID:

FIRST:
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (8 points) Suppose we have a function f defined by

$$
\begin{aligned}
& f(0)=f(1)=3 \\
& f(n)=5 f(n-2)+d, \text { for } n \geq 2
\end{aligned}
$$

where d is a constant. Express $f(n)$ in terms of $f(n-6)$ (where $n \geq 6$). Show your work and simplify your answer.
Solution:

$$
\begin{aligned}
f(n) & =5 f(n-2)+d \\
& =5(5(f(n-4)+d)+d) \\
& =5(5(5(f(n-6)+d)+d)+d) \\
& =5^{3} f(n-6)+(25+5+1) d \\
& =5^{3} f(n-6)+31 d
\end{aligned}
$$

2. (2 points) Suppose that G_{0} is the graph consisting of a single vertex. Also suppose that the graph G_{n} consists of a copy of G_{n-1} plus an extra vertex v and edges joining v to each vertex in G_{n-1}. Give a clear picture or precise description of G_{4}.
Solution: This is a recursive construction of all the complete graphs, except for the indexing being off by one. So G_{4} is just K_{5}.

CS 173, Fall 2015 Examlet 8, Part B

NETID:

FIRST:

LAST:

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1\end{array}$
(10 points) Suppose we have a function g defined (for n a power of 4) by

$$
\begin{aligned}
g(1) & =c \\
g(n) & =2 g(n / 4)+n \text { for } n \geq 4
\end{aligned}
$$

Your partner has already figured out that

$$
g(n)=2^{k} g\left(n / 4^{k}\right)+n \sum_{p=0}^{k-1} \frac{1}{2^{p}}
$$

Finish finding the closed form for $f(n)$ assuming that n is a power of 4 . Show your work and simplify your answer. Recall that $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$.

Solution: To find the value of k at the base case, set $n / 4^{k}=1$. Then $n=4^{k}$, so $k=\log _{4} n$. Notice also that $2^{\log _{4} n}=2^{\log _{2} n \log _{2} 4}=n^{1 / 2}=\sqrt{n}$

Substituting this into the above, we get

$$
\begin{aligned}
g(n) & =2^{\log _{4} n} \cdot c+n \sum_{p=0}^{\log _{4} n-1} \frac{1}{2^{p}} \\
& =2^{\log _{4} n} \cdot c+n\left(2-\frac{1}{2^{\log _{4} n-1}}\right) \\
& =c \sqrt{n}+n\left(2-\frac{2}{\sqrt{n}}\right) \\
& =c \sqrt{n}+2 n-2 \sqrt{n} \\
& =2 n-(c-2) \sqrt{n}
\end{aligned}
$$

