CS 173, Fall 2015 Examlet 8, Part B			ETI	D:]			
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

(10 points) Suppose we have a function g defined (for n a power of 2) by

$$g(1) = 3$$

 $g(n) = 4g(n/2) + n \text{ for } n \ge 2$

Your partner has already figured out that

$$g(n) = 4^k g(n/2^k) + \sum_{p=0}^{k-1} n2^p$$

Finish finding the closed form for g(n) assuming that n is a power of 2. Show your work and simplify your answer. Recall that $\log_b n = (\log_a n)(\log_b a)$.

Solution: To find the value of k at the base case, set $n/2^k = 1$. Then $n = 2^k$, so $k = \log_2 n$. Notice also that $4^{\log_2 n} = 4^{\log_4 n \log_4 2} = n^2$.

Substituting this into the above, we get

$$g(n) = 4^{k}g(n/2^{k}) + n\sum_{p=0}^{k-1} 2^{p}$$

= $4^{\log_{2} n} \cdot 3 + n\sum_{p=0}^{\log_{2} n-1} 2^{p}$
= $3n^{2} + n(2^{\log_{2} n} - 1)$
= $3n^{2} + n(n-1)$

CS 173, Fa Examlet 8	NI	ETI	D:									
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (8 points) Suppose we have a function g defined (for n a power of 3) by

$$g(9) = 5$$

 $g(n) = 3g(n/3) + n \text{ for } n \ge 27$

Your partner has already figured out that

$$g(n) = 3^k g(n/3^k) + kn$$

Finish finding the closed form for g. Show your work and simplify your answer.

Solution:

To find the value of k at the base case, set $n/3^k = 9$. Then $n = 3^{k+2}$, so $k + 2 = \log_3 n$, so $k + 2 = \log_3 n - 2$ Substituting this into the above, we get:

$$g(n) = 3^{\log_3 n - 2} g(9) + (\log_3 n - 2)n$$

= $3^{\log_3 n} 3^{-2} 5 + n \log_3 n - 2n)$
= $\frac{5}{9} n + n \log_3 n - 2n = n \log_3 n - \frac{15}{9}n$

2. (2 points) Check the (single) box that best characterizes each item.

CS 173, Fall 2015 Examlet 8, Part B			ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (8 points) Suppose we have a function g defined (for n a power of 2) by

$$g(1) = c$$

$$g(n) = 4g(n/2) + n \text{ for } n \ge 2$$

Express g(n) in terms of $g(n/2^3)$ (where $n \ge 8$). Show your work and simplify your answer. Solution:

$$g(n) = 4g(n/2) + n$$

= 4(4g(n/2² + n/2) + n
= 4(4(4g(n/2³) + n/2²) + n/2) + n
= 4³g(n/2³) + n(2² + 2 + 1)
= 4³g(n/2³) + 7n

2. (2 points) Suppose that $f : \mathbb{N} \to \mathbb{N}$ is such that f(n) = n!. Give a recursive definition of fSolution:

$$f(0) = 1$$
, and $f(n) = nf(n-1)$ for $n \ge 1$.
You could also have used $f(n+1) = (n+1)f(n)$ for $n \ge 0$.

CS 173, Fall 2015 Examlet 8, Part B			ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

(10 points) Suppose we have a function F defined (for n a power of 3) by

$$F(1) = 5$$

 $F(n) = 3F(n/3) + 7 \text{ for } n \ge 3$

Your partner has already figured out that

$$F(n) = 3^{k}F(n/3^{k}) + 7\sum_{p=0}^{k-1} 3^{p}$$

Finish finding the closed form for F. Show your work and simplify your answer. Recall the following useful closed form (for $r \neq 1$): $\sum_{k=0}^{n} r^k = \frac{r^{n+1}-1}{r-1}$

Solution:

To find the value of k at the base case, set $n/3^k = 1$. Then $n = 3^k$, so $k = \log_3 n$. Substituting this into the above, we get

$$F(n) = 3^{\log_3 n} \cdot 5 + 7 \sum_{p=0}^{\log_3 n-1} 3^p$$

= $5n + 7 \frac{3^{\log_3 n} - 1}{3-1}$
= $5n + 7 \frac{n-1}{3-1} = 5n + \frac{7(n-1)}{2}$

CS 173, Fa Examlet 8	NETID:											
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (8 points) Suppose we have a function f defined by

$$\begin{array}{rcl} f(0) &=& f(1) = 3 \\ f(n) &=& 5f(n-2) + d, \ \text{for} \ n \geq 2 \end{array}$$

where d is a constant. Express f(n) in terms of f(n-6) (where $n \ge 6$). Show your work and simplify your answer.

Solution:

$$f(n) = 5f(n-2) + d$$

= 5(5(f(n-4) + d) + d)
= 5(5(5(f(n-6) + d) + d) + d)
= 5³f(n-6) + (25 + 5 + 1)d
= 5³f(n-6) + 31d

2. (2 points) Suppose that G_0 is the graph consisting of a single vertex. Also suppose that the graph G_n consists of a copy of G_{n-1} plus an extra vertex v and edges joining v to each vertex in G_{n-1} . Give a clear picture or precise description of G_4 .

Solution: This is a recursive construction of all the complete graphs, except for the indexing being off by one. So G_4 is just K_5 .

CS 173, Fall 2015 Examlet 8, Part B			ETI	D:]			
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

(10 points) Suppose we have a function g defined (for n a power of 4) by

$$g(1) = c$$

$$g(n) = 2g(n/4) + n \text{ for } n \ge 4$$

Your partner has already figured out that

$$g(n) = 2^k g(n/4^k) + n \sum_{p=0}^{k-1} \frac{1}{2^p}$$

Finish finding the closed form for f(n) assuming that n is a power of 4. Show your work and simplify your answer. Recall that $\log_b n = (\log_a n)(\log_b a)$.

Solution: To find the value of k at the base case, set $n/4^k = 1$. Then $n = 4^k$, so $k = \log_4 n$. Notice also that $2^{\log_4 n} = 2^{\log_2 n \log_2 4} = n^{1/2} = \sqrt{n}$

Substituting this into the above, we get

$$g(n) = 2^{\log_4 n} \cdot c + n \sum_{p=0}^{\log_4 n-1} \frac{1}{2^p}$$

= $2^{\log_4 n} \cdot c + n(2 - \frac{1}{2^{\log_4 n-1}})$
= $c\sqrt{n} + n(2 - \frac{2}{\sqrt{n}})$
= $c\sqrt{n} + 2n - 2\sqrt{n}$
= $2n - (c-2)\sqrt{n}$