CS 173, Fall 2015 Examlet 8, Part A

NETID:

| FIRST: | | LAST: | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Discussion: | Thursday | 2 | 3 | 4 | 5 | Friday | 9 | 10 | 11 | 12 | 1 | 2 |

(20 points) Use (strong) induction to prove that $a-b$ divides $a^{n}-b^{n}$, for any integers a and b and any natural number n.

Hint: $\left(a^{n}-b^{n}\right)(a+b)=\left(a^{n+1}-b^{n+1}\right)+a b\left(a^{n-1}-b^{n-1}\right)$, for any real numbers a and b.
Let a and b be integers.
Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

CS 173, Fall 2015 Examlet 8, Part A

NETID:

FIRST:

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1\end{array}$
(20 points) Recall that the hypercube Q_{1} consists of two nodes joined by an edge and that Q_{n} consists of two copies of Q_{n-1} plus edges connecting corresponding nodes. Use (strong) induction to show Q_{n} has chromatic number 2 for any natural number $n \geq 1$.

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

CS 173, Fall 2015 Examlet 8, Part A

NETID:

(20 points) Use (strong) induction to prove that $(3+\sqrt{5})^{n}+(3-\sqrt{5})^{n}$ is an integer for all natural numbers n

Hint: $\left(a^{n}-b^{n}\right)(a+b)=\left(a^{n+1}-b^{n+1}\right)+a b\left(a^{n-1}-b^{n-1}\right)$, for any real numbers a and b.
Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

CS 173, Fall 2015 Examlet 8, Part A

NETID:

FIRST:
LAST:

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 \\ 2\end{array}$
(20 points) (20 points) Suppose that $f: \mathbb{N} \rightarrow \mathbb{Z}$ is defined by
$f(0)=2 \quad f(1)=5 \quad f(2)=15$
$f(n)=6 f(n-1)-11 f(n-2)+6 f(n-3)$, for all $n \geq 2$
Use (strong) induction to prove that $f(n)=1-2^{n}+2 \cdot 3^{n}$
Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

CS 173, Fall 2015 Examlet 8, Part A

NETID:

(20 points) Recall that the hypercube Q_{2} is a 4 -cycle, and that Q_{n} consists of two copies of Q_{n-1} plus edges connecting corresponding nodes. A Hamiltonian cycle is a cycle that visits each node exactly once, except obviously for when it returns to the starting node at the end. Use (strong) induction to show Q_{n} has Hamiltonian cycle for any natural number $n \geq 2$.

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

CS 173, Fall 2015 Examlet 8, Part A

NETID:

(20 points) Let function $f: \mathbb{N} \rightarrow \mathbb{Z}$ be defined by

$$
\begin{aligned}
& f(0)=3 \\
& f(1)=9 \\
& f(n)=f(n-1)+2 f(n-2), \text { for } n \geq 2
\end{aligned}
$$

Use (strong) induction to prove that $f(n)=4 \cdot 2^{n}+(-1)^{n-1}$ for any natural number n. Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

