NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(20 points) Use (strong) induction to prove that a - b divides $a^n - b^n$, for any integers a and b and any natural number n.

Hint: $(a^n - b^n)(a + b) = (a^{n+1} - b^{n+1}) + ab(a^{n-1} - b^{n-1})$, for any real numbers a and b.

Let a and b be integers.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

CS 173, Fall 2015 Examlet 8, Part A		NI	ETI	D:								
FIRST:					\mathbf{L}_{2}	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

(20 points) Recall that the hypercube Q_1 consists of two nodes joined by an edge and that Q_n consists of two copies of Q_{n-1} plus edges connecting corresponding nodes. Use (strong) induction to show Q_n has chromatic number 2 for any natural number $n \ge 1$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(20 points) Use (strong) induction to prove that $(3+\sqrt{5})^n+(3-\sqrt{5})^n$ is an integer for all natural numbers n

Hint: $(a^n - b^n)(a + b) = (a^{n+1} - b^{n+1}) + ab(a^{n-1} - b^{n-1})$, for any real numbers a and b.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(20 points) (20 points) Suppose that $f: \mathbb{N} \to \mathbb{Z}$ is defined by

$$f(0) = 2$$
 $f(1) = 5$ $f(2) = 15$

$$f(n) = 6f(n-1) - 11f(n-2) + 6f(n-3)$$
, for all $n \ge 2$

Use (strong) induction to prove that $f(n) = 1 - 2^n + 2 \cdot 3^n$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

CS 173, Fall 2015 Examlet 8, Part A		NF	ETI	D:								
FIRST:					\mathbf{L}_{I}	AST:						
Discussion:	Thursday	2	3	4	5	Friday	g	10	11	12	1	2

(20 points) Recall that the hypercube Q_2 is a 4-cycle, and that Q_n consists of two copies of Q_{n-1} plus edges connecting corresponding nodes. A *Hamiltonian cycle* is a cycle that visits each node exactly once, except obviously for when it returns to the starting node at the end. Use (strong) induction to show Q_n has Hamiltonian cycle for any natural number $n \geq 2$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NETID:

FIRST:

LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(20 points) Let function $f: \mathbb{N} \to \mathbb{Z}$ be defined by

$$f(0) = 3$$

$$f(1) = 9$$

$$f(n) = f(n-1) + 2f(n-2)$$
, for $n \ge 2$

Use (strong) induction to prove that $f(n) = 4 \cdot 2^n + (-1)^{n-1}$ for any natural number n.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: