

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

Solution: The chromatic number is four. The picture above shows how to color it with four colors (upper bound).

For the lower bound, the graph contains a W_6 whose hub is F and whose rim contains nodes A, B, C, D, E, H. Coloring a W_6 requires three colors. Then the node G is connected to all seven nodes in the W_6 , so it needs a different, fifth color.

1. (11 points) Let's define two sets as follows:

$$A = \{x \in \mathbb{R} : |x+1| \le 2\}$$
$$B = \{w \in \mathbb{R} : w^2 + 2w - 3 \le 0\}$$

Prove that A = B by proving two subset inclusions.

Solution: $A \subseteq B$: Let x be a real number and suppose $x \in A$. Then $|x + 1| \leq 2$. Therefore, $-3 \leq x + 1 \leq 1$. Therefore $x + 3 \geq 0$ and $x - 1 \leq 0$. So $x^2 + 2x - 3 = (x + 3)(x - 1) \leq 0$. So $x \in B$. $B \subseteq A$: Let x be a real number and suppose $x \in B$. Then $x^2 + 2x - 3 \leq 0$. Factoring this polynomial, we get $(x + 3)(x - 1) \leq 0$. So (x + 3) and (x - 1) must have opposite signs. Since x + 3 > x - 1, it must be the case that $x + 3 \geq 0$ and $x - 1 \leq 0$. Therefore, $-3 \leq x + 1 \leq 1$. So $|x + 1| \leq 2$, and therefore $x \in A$.

Since $A \subseteq B$ and $B \subseteq A$, A = B.

CS 173, Fall 2015 Examlet 7, Part B		NF	ETI	D:								
FIRST:					LAST:							
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (11 points) Recall that if G is a graph, then $\chi(G)$ is its chromatic number. Let's define the "doubled" version of a graph G as follows: make two copies of G and add an edge joining each pair of corresponding nodes. For example, the doubled version of C_3 looks like:

Suppose that T is the doubled version of a graph G. Describe how $\chi(T)$ is related to $\chi(G)$, justifying your answer. Your answer should handle any choice for G, not just C_3 .

Solution:

 $\chi(T) = \max(2, \chi(G)).$

First, let's suppose that $\chi(G) \geq 2$. If $\chi(G) = n$, then we can start coloring T by coloring one copy of G with n colors. Let's call the colors c_1, c_2, \ldots, c_n . Now color the second copy of G using the rule that if a node in the first copy has color c_i , then the corresponding node in the second copy has color c_{i+1} if $i + 1 \leq n$ or c_1 if i + 1 = n. This shows that $\chi(T) = \chi(G)$.

This construction won't work if $\chi(G)$ is 1. In this case, there aren't any edges in G. So the only edges in T connect pairs of corresponding nodes. This means that T requires two colors.

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

Solution: The chromatic number is five. The picture above shows how to color it with five colors (upper bound).

For the lower bound, the graph contains a W_5 whose hub is F and whose rim contains nodes A, B, C, D, E. Coloring a W_5 requires four colors. Then the node G is connected to all six nodes in the W_5 , so it needs a different, fifth color.

1. (11 points) Let's define two sets as follows:

$$A = \{ (p+1, p) : p \in \mathbb{R} \}$$
$$B = \{ \lambda(1, 0) + (1 - \lambda)(2, 1) : \lambda \in \mathbb{R} \}$$

Prove that A = B by proving two subset inclusions.

Solution: $B \subseteq A$: Let (x, y) be a pair of real numbers such that $(x, y) \in B$. Then $(x, y) = \lambda(1, 0) + (1 - \lambda)(2, 1)$ for some real number λ . Then $x = \lambda + 2 - 2\lambda = 2 - \lambda$ and $y = 1 - \lambda$. So x = y + 1. So (x, y) has the form (p + 1, p) and therefore $(x, y) \in A$.

 $A \subseteq B$: Let (x, y) be a pair of real numbers such that $(x, y) \in A$. Then x = y + 1. Consider $\lambda = 1 - y$. Then $y = 1 - \lambda$ and $x = 2 - \lambda = \lambda + 2(1 - \lambda)$. So $(x, y) = \lambda(1, 0) + (1 - \lambda)(2, 1)$. Therefore $(x, y) \in A$.

Since $A \subseteq B$ and $B \subseteq A$, A = B.

CS 173, Fall 2015 Examlet 7, Part B		NETID:									
FIRST:				$\mathbf{L}_{\mathbf{z}}$	AST:						
Discussion: Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (11 points) Recall that if G is a graph, then $\chi(G)$ is its chromatic number. Suppose that G is a graph and H is another graph not connected to G. Suppose G and H each have at least two nodes and at least one edge. Dr. Evil picks two adjacent nodes a and b from G, and also two adjacent nodes c and d from H. He merges G and H into a single graph T by merging b and d into a single node, and adding an edge connecting a and c. So, if G and H are as shown on the left, then T might look as shown on the right.

Describe how $\chi(T)$ is related to $\chi(G)$ and $\chi(H)$, justifying your answer.

Solution: $\chi(T) = \max(\chi(G), \chi(H), 3)$

The output graph contains a triangle, so it definitely requires at least three colors.

Without loss of generality, suppose that $k = \chi(G) \ge \chi(H)$. Then $\chi(T)$ must be at least k because G is a subgraph of T. Also notice that k is at least 2 because the two input graphs each contain an edge.

First, suppose k is at least 3. To color T with k colors, first color the part of T corresponding to G. We have a coloring of H that uses $\leq k$ colors, but the color choices might not be compatible with how we've started coloring T. If the two merged nodes b and d have different colors, swap the names of two colors to make them same. If a and c have the same color, swap the color of c with some third color, remembering that k is at least 3. Adjust the rest of the coloring for H to use these same choices of color names.

Special case: if k = 2, then we carry out the same procedure. However, we won't have any third color available to fix the color of c, so we'll have to allocate an extra color.

