CS 173, Fall 2015

 Examlet 7, Part BNETID:
FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

Exactly 11 Xboxes fit in my suitcase by volume, but I haven't checked their total weight. 11 is how many Xboxes the suitcase can hold.

All elements of M are also elements			
of X.	$M=X \quad \square$	$M \subseteq X \quad \square$	$X \subseteq M$

$\sum_{i=1}^{p-1} i=\quad \frac{p(p-1)}{2} \quad \square \quad \frac{(p-1)^{2}}{2} \quad \square \quad \frac{p(p+1)}{2} \quad \square \quad \frac{(p-1)(p+1)}{2} \quad \square$

CS 173, Fall 2015 Examlet 7, Part B

NETID:

FIRST:
LAST:
Discussion: $\begin{array}{llllllllllll} & T h u r s d a y & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1\end{array} 2$

1. (11 points) Let's define two sets as follows:

$$
\begin{gathered}
A=\{x \in \mathbb{R}:|x+1| \leq 2\} \\
B=\left\{w \in \mathbb{R}: w^{2}+2 w-3 \leq 0\right\}
\end{gathered}
$$

Prove that $A=B$ by proving two subset inclusions.
2. (4 points) Check the (single) box that best characterizes each item.

I found 143 identical marbles in my saucepan last Saturday. 143 is ___ how many marbles this size will fits in my saucepan.

Chromatic number of a bipartite graph with at least two vertices.

exactly
not a bound on

$1 \square$ $2 \square$
$3 \square$ can't tell \square

CS 173, Fall 2015 Examlet 7, Part B

NETID:

FIRST:
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (11 points) Recall that if G is a graph, then $\chi(G)$ is its chromatic number. Let's define the "doubled" version of a graph G as follows: make two copies of G and add an edge joining each pair of corresponding nodes. For example, the doubled version of C_{3} looks like:

Suppose that T is the doubled version of a graph G. Describe how $\chi(T)$ is related to $\chi(G)$, justifying your answer. Your answer should handle any choice for G, not just C_{3}.
2. (4 points) Check the (single) box that best characterizes each item.

All elements of X are also elements of M.

$$
M=X \quad \square
$$

$$
M \subseteq X \quad \square \subseteq M
$$

\square $\sum_{k=1}^{n} \frac{1}{2^{k}} \quad 1-\left(\frac{1}{2}\right)^{n-1} \square \quad 2-\left(\frac{1}{2}\right)^{n} \quad \square \quad 1-\left(\frac{1}{2}\right)^{n} \quad \square \quad 2-\left(\frac{1}{2}\right)^{n-1} \quad \square$

CS 173, Fall 2015

 Examlet 7, Part BNETID:
FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

$$
\begin{array}{llll}
k-1 \\
i=0 & \left.\begin{array}{lll}
\frac{k^{2}(k-1)}{2}+2 k & \square & \frac{k(k+1)}{2}+2(k-1) \\
\hline \frac{k^{2}(k+1)}{2}+2 k & \square & \frac{k(k-1)}{2}+2(k-1)
\end{array} \begin{array}{l}
\square
\end{array}\right]
\end{array}
$$

Putting 10 people in the canoe caused it to sink. 10 is \qquad how many people the canoe can carry.
$\begin{array}{llll}\text { an upper bound on } & \square & \begin{array}{l}\text { exactly } \\ \text { not a bound on }\end{array} & \square \\ \text { a lower bound on } & \square & & \end{array}$

The chromatic number of a graph with maximum vertex degree D

$$
\begin{array}{lll}
=D & \square & \\
=D+1 & \square \\
\leq D+1 & \square & \square+1
\end{array}
$$

CS 173, Fall 2015 Examlet 7, Part B

NETID:

1. (11 points) Let's define two sets as follows:

$$
\begin{gathered}
A=\{(p+1, p): p \in \mathbb{R}\} \\
B=\{\lambda(1,0)+(1-\lambda)(2,1): \lambda \in \mathbb{R}\}
\end{gathered}
$$

Prove that $A=B$ by proving two subset inclusions.
2. (4 points) Check the (single) box that best characterizes each item.
$\begin{array}{llll}\text { Suppose I want to estimate } \frac{103}{20} . & \text { an upper bound } \\ 3 \text { is } & \begin{array}{l}\square \\ \text { a lower bound }\end{array} & \begin{array}{ll}\text { an exact answer } \\ \text { not a bound on }\end{array} & \square\end{array}$ The chromatic number of C_{n}.

$3 \quad \square$
$\leq 3 \quad \leq 4 \quad \square$

CS 173, Fall 2015 Examlet 7, Part B

NETID:
FIRST:

1. (11 points) Recall that if G is a graph, then $\chi(G)$ is its chromatic number. Suppose that G is a graph and H is another graph not connected to G. Suppose G and H each have at least two nodes and at least one edge. Dr. Evil picks two adjacent nodes a and b from G, and also two adjacent nodes c and d from H. He merges G and H into a single graph T by merging b and d into a single node, and adding an edge connecting a and c. So, if G and H are as shown on the left, then T might look as shown on the right.

Describe how $\chi(T)$ is related to $\chi(G)$ and $\chi(H)$, justifying your answer.
2. (4 points) Check the (single) box that best characterizes each item.

$$
\sum_{k=3}^{n} k^{7}=\quad \sum_{p=1}^{n-2} p^{9} \square \quad \sum_{p=1}^{n-2} k^{7} \square \quad \sum_{p=1}^{n-2} k^{9} \square \quad \sum_{p=1}^{n-2}(p+2)^{7} \square
$$

W_{7} is a subgraph of graph $H .4$ is
\qquad the chromatic number of H.
an upper bound on
a lower bound on

exactly not a bound on

