CS 173, Fa Examlet 7		NI	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

CS 173, Fa Examlet 7,		NF	ETI	D:								
FIRST:					\mathbf{L}	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (11 points) Let's define two sets as follows:

$$A = \{ x \in \mathbb{R} : |x+1| \le 2 \}$$
$$B = \{ w \in \mathbb{R} : w^2 + 2w - 3 \le 0 \}$$

Prove that A = B by proving two subset inclusions.

I found 143 identical marbles in my saucepan last Saturday. 143 is how many marbles this size will fits in my saucepan.	-	 r bound on bound on		exactl not a	y bound on	
Chromatic number of a bipartite graph with at least two vertices.	1	2	3		can't tell	

CS 173, Fall 2 Examlet 7, Pa		NETID:										
FIRST:						AST:						
Discussion: T	hursdav	2	3	4	5	Friday	9	10	11	12	1	2

1. (11 points) Recall that if G is a graph, then $\chi(G)$ is its chromatic number. Let's define the "doubled" version of a graph G as follows: make two copies of G and add an edge joining each pair of corresponding nodes. For example, the doubled version of C_3 looks like:

Suppose that T is the doubled version of a graph G. Describe how $\chi(T)$ is related to $\chi(G)$, justifying your answer. Your answer should handle any choice for G, not just C_3 .

CS 173, Fa Examlet 7,		NF	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (9 points) What is the chromatic number of graph G (below)? Justify your answer.

CS 173, Fa Examlet 7,		NE	ETI	D:								
FIRST:					$\mathbf{L}_{\mathbf{L}}$	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (11 points) Let's define two sets as follows:

$$A = \{ (p+1, p) : p \in \mathbb{R} \}$$
$$B = \{ \lambda(1, 0) + (1 - \lambda)(2, 1) : \lambda \in \mathbb{R} \}$$

Prove that A = B by proving two subset inclusions.

CS 173, Fall 2015 Examlet 7, Part B	NF	ETI	D:								
FIRST:					AST:						
Discussion: Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (11 points) Recall that if G is a graph, then $\chi(G)$ is its chromatic number. Suppose that G is a graph and H is another graph not connected to G. Suppose G and H each have at least two nodes and at least one edge. Dr. Evil picks two adjacent nodes a and b from G, and also two adjacent nodes c and d from H. He merges G and H into a single graph T by merging b and d into a single node, and adding an edge connecting a and c. So, if G and H are as shown on the left, then T might look as shown on the right.

Describe how $\chi(T)$ is related to $\chi(G)$ and $\chi(H)$, justifying your answer.

