CS 173, Fall 2015

 Examlet 7, Part ANETID:

| FIRST: | | | LAST: | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Discussion: | Thursday | 2 | 3 | 4 | 5 | Friday | 9 | 10 | 11 | 12 | 1 | 2 |

Use (strong) induction to prove the following claim:

Claim: $(4 n)$! is divisible by 8^{n}, for all positive integers n.

Solution: Proof by induction on n.

Base case(s): At $n=1$, the claim amounts to " 4 ! is divisible by $8 . " 4!=24$ which is clearly divisible by 8 .

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that (4n)! is divisible by 8^{n}, for $n=1,2, \ldots, k$.

Rest of the inductive step: At $n=k+1,(4 n)!=(4(k+1))!=(4 k+4)!=(4 k+4)(4 k+3)(4 k+$ $2)(4 k+1)(4 k)$!

Now, $(4 k+4)$ is divisible by 4 , and $(4 k+2)$ is divisible by 2 . So $(4 k+4)(4 k+3)(4 k+2)(4 k+1)$ is divisible by 8 . By the inductive hypothesis, we know that $(4 k)$! is divisible by 8^{k}. Combining these two facts, $(4(k+1))$! is divisible by 8^{k+1}, which is what we needed to show.

CS 173, Fall 2015 Examlet 7, Part A

NETID:

FIRST:
LAST:

Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

Use (strong) induction to prove the following claim:

For all positive integers $n, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$

Solution: Proof by induction on n.

Base case(s): At $n=1, \sum_{i=1}^{n} i^{2}=1$ and $\frac{n(n+1)(2 n+1)}{6}=\frac{1 \cdot 2 \cdot 3}{6}=1$. So the claim is true.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$ for $n=1,2, \ldots, k$.

Rest of the inductive step: By the inductive hypothesis, we know that $\sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}$. Then

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{2} & =\left(\sum_{i=1}^{k} i^{2}\right)+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =(k+1) \frac{k(2 k+1)}{6}+(k+1)=(k+1) \frac{k(2 k+1)+6 k+6}{6}
\end{aligned}
$$

But $k(2 k+1)+6 k+6=2 k^{2}+7 k+6=(n+2)(2 n+3)$. So $\sum_{i=1}^{k+1} i^{2}=\frac{(k+1)(k+2)(2 k+3)}{6}$ which is $\frac{n(n+1)(2 n+1)}{6}$ at $n=k+1$. So the claim holds for $n=k+1$.

CS 173, Fall 2015 Examlet 7, Part A

NETID:

FIRST:
LAST:
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

Use (strong) induction to prove the following claim:

Claim: $\sum_{p=0}^{n}(p \cdot p!)=(n+1)!-1$, for all natural numbers n.

Recall that 0 ! is defined to be 1 .

Solution: Proof by induction on n.
Base case(s):
Solution: At $n=0, \sum_{p=0}^{n}(p \cdot p!)=0 \cdot 0!=0$ Also $(n+1)!-1=0!-1=1-1=0$. So the claim holds.
Inductive hypothesis [Be specific, don't just refer to "the claim"]:
Solution: Suppose that $\sum_{p=0}^{n}(p \cdot p!)=(n+1)!-1$, for $n=0,1, \ldots, k$.
Rest of the inductive step:
Solution: By the inductive hypothesis $\sum_{p=0}^{k}(p \cdot p!)=(k+1)!-1$. So

$$
\begin{aligned}
\sum_{p=0}^{k+1}(p \cdot p!) & =((n+1) \cdot(n+1)!)+\sum_{p=0}^{k}(p \cdot p!) \\
& =((k+1) \cdot(k+1)!)+\sum_{p=0}^{k}(p \cdot p!) \\
& =(n+1) \cdot(k+1)!+(k+1)!-1 \\
& =(k+1) \cdot(k+1)!+(k+1)!-1 \\
& =[(k+1)+1] \cdot(k+1)!-1 \\
& =(k+2) \cdot(k+1)!-1=(k+2)!-1
\end{aligned}
$$

CS 173, Fall 2015 Examlet 7, Part A

NETID:

Use (strong) induction to prove the following claim:

Claim: for all natural numbers $n, \sum_{j=0}^{n} 2(-7)^{j}=\frac{1-(-7)^{n+1}}{4}$

Solution: Proof by induction on n.

Base case(s): At $n=0, \sum_{j=0}^{n} 2(-7)^{j}=2$ and $\frac{1-(-7)^{n+1}}{4}=\frac{1-(-7)}{4}=2$. So the claim holds at $n=0$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $\sum_{j=0}^{n} 2(-7)^{j}=\frac{1-(-7)^{n+1}}{4}$ for $n=0,1, \ldots, k$.

Rest of the inductive step:
In particular $\sum_{j=0}^{k} 2(-7)^{j}=\frac{1-(-7)^{k+1}}{4}$. So then

$$
\begin{aligned}
\sum_{j=0}^{k+1} 2(-7)^{j} & =\left(\sum_{j=0}^{n} 2(-7)^{j}\right)+2(-7)^{k+1} \\
& =\frac{1-(-7)^{k+1}}{4}+2(-7)^{k+1}=\frac{1-(-7)^{k+1}+8(-7)^{k+1}}{4}=\frac{1+7(-7)^{k+1}}{4} \\
& =\frac{1-(-7)^{k+2}}{4}
\end{aligned}
$$

So $\sum_{j=0}^{k+1} 2(-7)^{j}=\frac{1-(-7)^{k+2}}{4}$, which is what we needed to show.

CS 173, Fall 2015 Examlet 7, Part A

NETID:

FIRST:
LAST:

Use (strong) induction and the fact that $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$ to prove the following claim:

For all natural numbers $n,\left(\sum_{i=0}^{n} i\right)^{2}=\sum_{i=0}^{n} i^{3}$
Solution: Proof by induction on n.

Base case(s): At $n=0,\left(\sum_{i=0}^{n} i\right)^{2}=0^{2}=0=\sum_{i=0}^{n} i^{3}$. So the claim is true.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $\left(\sum_{i=0}^{n} i\right)^{2}=\sum_{i=0}^{n} i^{3}$ for $n=0,1, \ldots, k$.

Rest of the inductive step:
Starting with the lefthand side of the equation for $n=k+1$, we get

$$
\left(\sum_{i=0}^{k+1} i\right)^{2}=\left((k+1)+\sum_{i=0}^{k} i\right)^{2}=(k+1)^{2}+2(k+1) \sum_{i=0}^{k} i+\left(\sum_{i=0}^{k} i\right)^{2}
$$

By the inductive hypothesis $\left(\sum_{i=0}^{k} i\right)^{2}=\sum_{i=0}^{k} i^{3}$. Substituting this and the fact we were told to assume, we get

$$
\begin{aligned}
& \left(\sum_{i=0}^{k+1} i\right)^{2}=(k+1)^{2}+2(k+1) \frac{k(k+1)}{2}+\sum_{i=0}^{k} i^{3}=(k+1)^{2}+k(k+1)^{2}+\sum_{i=0}^{k} i^{3}=(k+1)^{3}+\sum_{i=0}^{k} i^{3}=\sum_{i=0}^{k+1} i^{3} \\
& \quad \text { So }\left(\sum_{i=0}^{k+1} i\right)^{2}=\sum_{i=0}^{k+1} i^{3} \text { which is what we needed to show. }
\end{aligned}
$$

CS 173, Fall 2015 Examlet 7, Part A

NETID:

FIRST:		LAST:										
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Use (strong) induction to prove the following claim:

For all positive integers $n, \sum_{p=1}^{n}(-1)^{p-1} p^{2}=\frac{(-1)^{n-1} n(n+1)}{2}$

Solution: Proof by induction on n.

Base case(s): At $n=1, \sum_{p=1}^{n}(-1)^{p-1} p^{2}=(-1)^{0} \cdot 0^{2}=0$.
And $\frac{(-1)^{n-1} n(n+1)}{2}=\frac{(-1)^{-1} 0 \cdot 1}{2}=0$. So the claim holds at $n=1$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:
$\sum_{p=1}^{n}(-1)^{p-1} p^{2}=\frac{(-1)^{n-1} n(n+1)}{2}$ for $n=1,2, \cdot, k$.

Rest of the inductive step:
By the inductive hypothesis, $\sum_{p=1}^{k}(-1)^{p-1} p^{2}=\frac{(-1)^{k-1} k(k+1)}{2}$ for

$$
\begin{aligned}
\sum_{p=1}^{k+1}(-1)^{p-1} p^{2} & =(-1)^{k}(k+1)^{2}+\sum_{p=1}^{k}(-1)^{p-1} p^{2}=(-1)^{k}(k+1)^{2}+\frac{(-1)^{k-1} k(k+1)}{2} \\
& =(-1)^{k}(k+1)^{2}-\frac{(-1)^{k} k(k+1)}{2}=(-1)^{k}(k+1)\left((k+1)-\frac{k}{2}\right) \\
& =(-1)^{k}(k+1) \frac{2(k+1)-k}{2}=\frac{(-1)^{k}(k+1)(k+2)}{2}
\end{aligned}
$$

So $\sum_{p=1}^{k+1}(-1)^{p-1} p^{2}=\frac{(-1)^{k}(k+1)(k+2)}{2}$ which is the claim at $n=k+1$ i.e. what we needed to show.

