CS 173, Fa Examlet 7,	ll 2015 , Part A	NI	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Claim: (4n)! is divisible by 8^n , for all positive integers n.

Solution: Proof by induction on n.

Base case(s): At n = 1, the claim amounts to "4! is divisible by 8." 4! = 24 which is clearly divisible by 8.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that (4n)! is divisible by 8^n , for n = 1, 2, ..., k.

Rest of the inductive step: At n = k + 1, (4n)! = (4(k+1))! = (4k+4)! = (4k+4)(4k+3)(4k+2)(4k+1)(4k)!

Now, (4k + 4) is divisible by 4, and (4k + 2) is divisible by 2. So (4k + 4)(4k + 3)(4k + 2)(4k + 1) is divisible by 8. By the inductive hypothesis, we know that (4k)! is divisible by 8^k . Combining these two facts, (4(k + 1))! is divisible by 8^{k+1} , which is what we needed to show.

CS 173, Fa Examlet 7	dll 2015 , Part A	NI	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

For all positive integers n, $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

Solution: Proof by induction on n.

Base case(s): At n = 1, $\sum_{i=1}^{n} i^2 = 1$ and $\frac{n(n+1)(2n+1)}{6} = \frac{1 \cdot 2 \cdot 3}{6} = 1$. So the claim is true.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ for n = 1, 2, ..., k.

Rest of the inductive step: By the inductive hypothesis, we know that $\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$. Then

$$\sum_{i=1}^{k+1} i^2 = \left(\sum_{i=1}^k i^2\right) + (k+1)^2$$

= $\frac{k(k+1)(2k+1)}{6} + (k+1)^2$
= $(k+1)\frac{k(2k+1)}{6} + (k+1) = (k+1)\frac{k(2k+1) + 6k + 6}{6}$

But $k(2k+1) + 6k + 6 = 2k^2 + 7k + 6 = (n+2)(2n+3)$. So $\sum_{i=1}^{k+1} i^2 = \frac{(k+1)(k+2)(2k+3)}{6}$ which is $\frac{n(n+1)(2n+1)}{6}$ at n = k+1. So the claim holds for n = k+1.

CS 173, Fa Examlet 7,	ll 2015 Part A	NI	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Claim:
$$\sum_{p=0}^{n} (p \cdot p!) = (n+1)! - 1$$
, for all natural numbers n .

Recall that 0! is defined to be 1.

Solution: Proof by induction on n.

Base case(s):

Solution: At n = 0, $\sum_{p=0}^{n} (p \cdot p!) = 0 \cdot 0! = 0$ Also (n+1)! - 1 = 0! - 1 = 1 - 1 = 0. So the claim holds.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Solution: Suppose that $\sum_{p=0}^{n} (p \cdot p!) = (n+1)! - 1$, for n = 0, 1, ..., k.

Rest of the inductive step:

Solution: By the inductive hypothesis $\sum_{p=0}^{k} (p \cdot p!) = (k+1)! - 1$. So

$$\begin{split} \sum_{p=0}^{k+1} (p \cdot p!) &= ((n+1) \cdot (n+1)!) + \sum_{p=0}^{k} (p \cdot p!) \\ &= ((k+1) \cdot (k+1)!) + \sum_{p=0}^{k} (p \cdot p!) \\ &= (n+1) \cdot (k+1)! + (k+1)! - 1 \\ &= (k+1) \cdot (k+1)! + (k+1)! - 1 \\ &= [(k+1)+1] \cdot (k+1)! - 1 \\ &= (k+2) \cdot (k+1)! - 1 = (k+2)! - \end{split}$$

1

CS 173, Fa Examlet 7,	ll 2015 , Part A	NF	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Claim: for all natural numbers
$$n$$
, $\sum_{j=0}^{n} 2(-7)^{j} = \frac{1 - (-7)^{n+1}}{4}$

Solution: Proof by induction on n.

Base case(s): At n = 0, $\sum_{j=0}^{n} 2(-7)^j = 2$ and $\frac{1-(-7)^{n+1}}{4} = \frac{1-(-7)}{4} = 2$. So the claim holds at n = 0.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that
$$\sum_{j=0}^{n} 2(-7)^j = \frac{1-(-7)^{n+1}}{4}$$
 for $n = 0, 1, \dots, k$.

Rest of the inductive step:

In particular
$$\sum_{j=0}^{k} 2(-7)^j = \frac{1 - (-7)^{k+1}}{4}$$
. So then

$$\sum_{j=0}^{k+1} 2(-7)^j = \left(\sum_{j=0}^n 2(-7)^j\right) + 2(-7)^{k+1}$$
$$= \frac{1 - (-7)^{k+1}}{4} + 2(-7)^{k+1} = \frac{1 - (-7)^{k+1} + 8(-7)^{k+1}}{4} = \frac{1 + 7(-7)^{k+1}}{4}$$
$$= \frac{1 - (-7)^{k+2}}{4}$$

So
$$\sum_{j=0}^{k+1} 2(-7)^j = \frac{1-(-7)^{k+2}}{4}$$
, which is what we needed to show.

CS 173, Fa Examlet 7,	ll 2015 Part A	NF	ETI	D:								
FIRST:					$\mathbf{L}_{\mathbf{L}}$	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Use (strong) induction and the fact that $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$ to prove the following claim:

For all natural numbers n, $\left(\sum_{i=0}^{n} i\right)^2 = \sum_{i=0}^{n} i^3$

Solution: Proof by induction on n.

Base case(s): At n = 0, $(\sum_{i=0}^{n} i)^2 = 0^2 = 0 = \sum_{i=0}^{n} i^3$. So the claim is true.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $(\sum_{i=0}^{n} i)^2 = \sum_{i=0}^{n} i^3$ for $n = 0, 1, \dots, k$.

Rest of the inductive step:

Starting with the lefthand side of the equation for n = k + 1, we get

$$\left(\sum_{i=0}^{k+1} i\right)^2 = \left((k+1) + \sum_{i=0}^k i\right)^2 = (k+1)^2 + 2(k+1)\sum_{i=0}^k i + \left(\sum_{i=0}^k i\right)^2$$

By the inductive hypothesis $\left(\sum_{i=0}^{k} i\right)^2 = \sum_{i=0}^{k} i^3$. Substituting this and the fact we were told to assume, we get

$$\left(\sum_{i=0}^{k+1} i\right)^2 = (k+1)^2 + 2(k+1)\frac{k(k+1)}{2} + \sum_{i=0}^k i^3 = (k+1)^2 + k(k+1)^2 + \sum_{i=0}^k i^3 = (k+1)^3 + \sum_{i=0}^k i^3 = \sum_{i=0}^{k+1} i^3$$
So $\left(\sum_{i=0}^{k+1} i\right)^2 = \sum_{i=0}^{k+1} i^3$ which is what we needed to show.

CS 173, Fa Examlet 7,	ll 2015 Part A	NI	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

For all positive integers
$$n$$
, $\sum_{p=1}^{n} (-1)^{p-1} p^2 = \frac{(-1)^{n-1} n(n+1)}{2}$

Solution: Proof by induction on *n*.

Base case(s): At n = 1, $\sum_{p=1}^{n} (-1)^{p-1} p^2 = (-1)^0 \cdot 0^2 = 0$. And $\frac{(-1)^{n-1} n(n+1)}{2} = \frac{(-1)^{-1} 0 \cdot 1}{2} = 0$. So the claim holds at n = 1.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

$$\sum_{p=1}^{n} (-1)^{p-1} p^2 = \frac{(-1)^{n-1} n(n+1)}{2} \text{ for } n = 1, 2, \cdot, k.$$

Rest of the inductive step:

By the inductive hypothesis, $\sum_{p=1}^{k} (-1)^{p-1} p^2 = \frac{(-1)^{k-1}k(k+1)}{2}$ for

$$\sum_{p=1}^{k+1} (-1)^{p-1} p^2 = (-1)^k (k+1)^2 + \sum_{p=1}^k (-1)^{p-1} p^2 = (-1)^k (k+1)^2 + \frac{(-1)^{k-1} k (k+1)}{2}$$
$$= (-1)^k (k+1)^2 - \frac{(-1)^k k (k+1)}{2} = (-1)^k (k+1) \left((k+1) - \frac{k}{2} \right)$$
$$= (-1)^k (k+1) \frac{2(k+1) - k}{2} = \frac{(-1)^k (k+1)(k+2)}{2}$$

So $\sum_{p=1}^{k+1} (-1)^{p-1} p^2 = \frac{(-1)^k (k+1)(k+2)}{2}$ which is the claim at n = k+1 i.e. what we needed to show.