CS 173, Fall 2015 Examlet 7, Part A

Use (strong) induction to prove the following claim:

Claim: ($4 n$)! is divisible by 8^{n}, for all positive integers n.

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

CS 173, Fall 2015 Examlet 7, Part A

FIRST:		LAST:										
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Use (strong) induction to prove the following claim:

For all positive integers $n, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

CS 173, Fall 2015 Examlet 7, Part A

FIRST:		LAST:										
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Use (strong) induction to prove the following claim:

Claim: $\sum_{p=0}^{n}(p \cdot p!)=(n+1)!-1$, for all natural numbers n.

Recall that 0 ! is defined to be 1 .

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

CS 173, Fall 2015 Examlet 7, Part A

FIRST:		LAST:										
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Use (strong) induction to prove the following claim:

Claim: for all natural numbers $n, \sum_{j=0}^{n} 2(-7)^{j}=\frac{1-(-7)^{n+1}}{4}$

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

CS 173, Fall 2015 Examlet 7, Part A

NETID:

FIRST:			LAST:									
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Use (strong) induction and the fact that $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$ to prove the following claim:

For all natural numbers $n,\left(\sum_{i=0}^{n} i\right)^{2}=\sum_{i=0}^{n} i^{3}$

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: (Start by removing the top term from the sum on the lefthand side.)

CS 173, Fall 2015 Examlet 7, Part A

Use (strong) induction to prove the following claim:

For all positive integers $n, \sum_{p=1}^{n}(-1)^{p-1} p^{2}=\frac{(-1)^{n-1} n(n+1)}{2}$

Proof by induction on n.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

