CS 173, Fa Examlet 7,	ll 2015 Part A	NETID:										
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Claim: (4n)! is divisible by 8^n , for all positive integers n.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

CS 173, Fall 2015 NETID: Examlet 7, Part A LAST: FIRST: **Discussion:** Thursday $\mathbf{2}$ 3 $\mathbf{4}$ $\mathbf{5}$ Friday 9 1011 121 $\mathbf{2}$

Use (strong) induction to prove the following claim:

For all positive integers n, $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

CS 173, Fa Examlet 7	NF	ETI	D:]							
FIRST:					L	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Claim: $\sum_{p=0}^{n} (p \cdot p!) = (n+1)! - 1$, for all natural numbers n.

Recall that 0! is defined to be 1.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

CS 173, Fa Examlet 7	US 173, Fall 2015Examlet 7, Part A											
FIRST:					L	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Claim: for all natural numbers n, $\sum_{j=0}^{n} 2(-7)^j = \frac{1 - (-7)^{n+1}}{4}$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

CS 173, Fa Examlet 7,	ll 2015 Part A	15 t A NETII										
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Use (strong) induction and the fact that $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$ to prove the following claim:

For all natural numbers n, $(\sum_{i=0}^{n} i)^2 = \sum_{i=0}^{n} i^3$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: (Start by removing the top term from the sum on the lefthand side.)

CS 173, Fa Examlet 7	CS 173, Fall 2015Cxamlet 7, Part A											
FIRST:					L	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

For all positive integers n, $\sum_{p=1}^{n} (-1)^{p-1} p^2 = \frac{(-1)^{n-1} n(n+1)}{2}$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: