CS 173, Fall 2015 Examlet 5, Part B

1. (5 points) The departmental proctor needs to arrange 9 students in a row of 9 chairs for a makeup exam. 4 of these students are from CS 173 and cannot sit next to one another. How many options does the proctor have?
2. (10 points) Check the (single) box that best characterizes each item.

If a function from \mathbb{R} to \mathbb{R} is increasing, it must be one-to-one.

$g: \mathbb{N} \rightarrow \mathbb{N}$,
$g(x)=x$$\quad$ onto \quad not onto $\square \quad$ not a function $\quad \square$
$g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,
$g(x, y)=(y, 3 x)$$\quad$ one-to-one $\square \quad$ not one-to-one $\quad \square \quad$ not a function $\quad \square$
$\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x y=1$

false \square

CS 173, Fall 2015 Examlet 5, Part B

1. (5 points) How many different 13 -letter strings ending with s can be made be rearranging the characters in the word ' 'massachusetts' '? Show your work.
2. (10 points) Check the (single) box that best characterizes each item.

If $f: \mathbb{Z} \rightarrow \mathbb{R}$ is a function such that $f(x)=2 x$ then the set of all even
integers is the \qquad of f.

$g: \mathbb{N} \rightarrow \mathbb{Z}$,
$g(x)=x$
onto \square

not a function \square
$g: \mathbb{Z} \rightarrow \mathbb{R}$,
$g(x)=x+2.137$
one-to-one \square not one-to-one \square not a function \square
$g: \mathbb{R} \rightarrow \mathbb{Z}$,
$g(x)=|x|$
one-to-one \square not one-to-one \square not a function \square
$\forall p \in \mathbb{Z}^{+}, \exists t \in \mathbb{Z}^{+}, \operatorname{gcd}(p, t)=1$ true \square false \square

CS 173, Fall 2015 Examlet 5, Part B

FIRST:

LAST:

Discussion: $\begin{array}{lllllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) Hermione Granger has 7000 socks in her magically expanding drawer. The socks are colored purple, magenta, shocking pink, and neon green. How many socks must she pull out of the drawer before she is guaranteed to have two socks of the same color. Briefly justify your answer.
2. (10 points) Check the (single) box that best characterizes each item.

A function is onto if and only if its image is the same as its co-domain.

$g: \mathbb{Z} \rightarrow \mathbb{Z}$,
$g(x)=7-\left\lfloor\frac{x}{3}\right\rfloor$
$g: \mathbb{Z} \rightarrow \mathbb{N}$,
$g(x)=x$
onto \square
not onto \square not a function \square
$f: \mathbb{N} \rightarrow \mathbb{R}$,
$f(x)=x^{2}+2$
one-to-one \square not one-to-one \square not a function \square
$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x y=1$ true

false \square

CS 173, Fall 2015 Examlet 5, Part B

| FIRST: | | | LAST: | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Discussion: | Thursday | 2 | 3 | 4 | 5 | Friday | 9 | 10 | 11 | 12 | 1 | 2 |

1. (5 points) Suppose that $|A|=p,|B|=q,|C|=n$. How many different functions are there from $A \times B$ to C ?
2. (10 points) Check the (single) box that best characterizes each item.

If $f: A \rightarrow B$ is onto, then $\quad|A| \geq|B| \quad \square \quad|A| \leq|B| \quad \square \quad|A|=|B| \quad \square$
$f: \mathbb{N}^{2} \rightarrow \mathbb{Z}$,
$f(p, q)=2^{p} 3^{q}$$\quad$ onto $\quad \square \quad$ not onto $\quad \square \quad$ not a function $\quad \square$
$f: \mathbb{R} \rightarrow \mathbb{Z}$,
$f(x)=x$$\quad$ one-to-one $\quad \square \quad$ not one-to-one $\quad \square \quad$ not a function \square
$g: \mathbb{N} \rightarrow \mathbb{Z}$,
$g(x)=x^{2}$$\quad$ one-to-one $\quad \square \quad$ not one-to-one $\quad \square \quad$ not a function $\quad \square$
$\exists t \in \mathbb{N}, \forall p \in \mathbb{Z}^{+}, \operatorname{gcd}(p, t)=p \quad$ true $\quad \square \quad$ false $\quad \square$

CS 173, Fall 2015 Examlet 5, Part B

FIRST:

LAST:

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 \\ 2\end{array}$

1. (5 points) Suppose that $|A|=3$ and $|B|=2$. How many onto functions are there from A to B ? Briefly justify or show work.
2. (10 points) Check the (single) box that best characterizes each item.
$f: \mathbb{Z} \rightarrow \mathbb{Z}$,
$f(x)=x+3(x$ even $), \quad$ one-to-one $\quad \square$ not one-to-one \square not a function \square $f(x)=x-21(x$ odd $)$

Suppose a graph with 12 vertices is colored with
exactly 5 colors. By the pigeonhole principle, there is true \square false \square a color that appear on at least two vertices.
$g: \mathbb{Z} \rightarrow \mathbb{Z}$,
$g(x)=|x|$$\quad$ onto $\quad \square \quad$ not onto $\quad \square \quad$ not a function $\quad \square$
$f: \mathbb{R} \rightarrow \mathbb{Z}$,
$f(x)=x$$\quad$ one-to-one $\quad \square \quad$ not one-to-one $\quad \square \quad$ not a function \square
$\exists t \in \mathbb{Z}^{+}, \forall p \in \mathbb{Z}^{+}, \operatorname{gcd}(p, t)=1$
true

false \square

CS 173, Fall 2015 Examlet 5, Part B

LAST:

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1\end{array}$

1. (5 points) Suppose that A is a set containing $k+1$ (distinct) integers. Use the Pigeonhole Principle to show that there are x and y in $A(x \neq y)$ such that and $x-y$ is a multiple of k.
2. (10 points) Check the (single) box that best characterizes each item.

If $f: A \rightarrow B$ is onto, then $\quad|A| \geq|B| \quad \square \quad|A| \leq|B| \quad \square \quad|A|=|B| \quad \square$
$g: \mathbb{N} \rightarrow \mathbb{Z}$,
$g(x)=|x|$$\quad$ one-to-one $\quad \square \quad$ not one-to-one $\quad \square \quad$ not a function $\quad \square$
$f: \mathbb{Z} \rightarrow \mathbb{Z}$,
$f(x)=x+3(x$ even $), \quad$ onto $\quad \square \quad$ not onto $\quad \square \quad$ not a function $\quad \square$ $f(x)=x-21(x$ odd)
$g: \mathbb{Z} \rightarrow \mathbb{N}$,
$g(x)=x$
one-to-one $\quad \square$
not one-to-one $\quad \square$ not a function \square
$\forall x \in \mathbb{Z}, \exists y \in \mathbb{N}, x^{2}=y$
true \square false \square

