CS 173, Fall 2015 Examlet 5, Part A

NETID:

| FIRST: | | | | LAST: | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Discussion: | Thursday | 2 | 3 | 4 | 5 | Friday | 9 | 10 | 11 | 12 | 1 | 2 |

1. (10 points) Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are onto. Prove that $g \circ f$ is onto.
2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: \mathbb{R} \rightarrow \mathbb{R}$ to be "strictly increasing." You must use explicit quantifiers.

CS 173, Fall 2015 Examlet 5, Part A

NETID:

| FIRST: | | | | | | | LAST: | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Discussion: | Thursday | 2 | 3 | 4 | 5 | Friday | 9 | 10 | 11 | 12 | 1 | 2 |

1. (10 points) Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-to-one. Prove that $g \circ f$ is one-to-one.
2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: C \rightarrow M$ to be "onto." You must use explicit quantifiers. Do not assume the reader knows what the image of the function is.

CS 173, Fall 2015 Examlet 5, Part A

NETID:

1. (10 points) Suppose that $g: \mathbb{N} \rightarrow \mathbb{N}$ is one-to-one. Let's define the function $f: \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$ by the equation $f(x, y)=(x+g(y), g(x))$. Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) the behavior of increasing functions.
2. (5 points) Suppose that $g: A \rightarrow B$ and $f: B \rightarrow C$. Prof. Snape claims that if g is onto, then $f \circ g$ is onto. Disprove this claim using a concrete counter-example in which A, B, and C are all small finite sets.

CS 173, Fall 2015 Examlet 5, Part A

NETID:

FIRST:
LAST:

Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (10 points) Suppose that $f: \mathbb{N} \rightarrow \mathbb{N}$ is onto. Let's define $g: \mathbb{N}^{2} \rightarrow \mathbb{N}$ by $g(x, y)=(1-f(x)) f(y)$. Prove that g is onto.
2. (5 points) Complete this picture to make an example of a function that is onto but not one-to-one, by adding elements to the domain and arrows showing how input values map to output values. The elements of the domain must be letters of the alphabet.

CS 173, Fall 2015 Examlet 5, Part A

NETID:

FIRST:			LAST:									
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (10 points) Suppose that $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is one-to-one. Let's define $g \mathbb{Z} \rightarrow \mathbb{Z}^{2}$ by $g(n)=(|n|, f(n)|n|)$. Prove that g is one-to-one.
2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: \mathbb{R} \rightarrow \mathbb{R}$ to be "increasing." You must use explicit quantifiers.

CS 173, Fall 2015 Examlet 5, Part A

NETID:

| FIRST: | | | LAST: |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (10 points) Suppose that $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is onto. Let's define $g: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ by $g(x, y)=f(x-7) f(y)$. Prove that g is onto.
2. (5 points) Using precise mathematical words and notation, define what it means for a function $g: C \rightarrow M$ to be "one-to-one." You must use explicit quantifiers; do not use words like "unique".
