CS 173, Fall 2015 Examlet 4, Part B

NETID:

FIRST:

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 \\ 2\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that R is a partial order on a set A. What additional property is required for R to be a linear order (aka total order)? Give specific details of the property, not just its name.

Solution: All pairs of elements must be comparable. That is, for any elements x and y in A, either $x R y$ or $y R x$.
3. (5 points) Recall that \mathbb{N}^{2} is the set of all pairs of natural numbers. Let's define the equivalence relation \sim on \mathbb{N}^{2} as follows: $(x, y) \sim(p, q)$ if and only $|x-y|=|p-q|$. List three members of $[(2,3)]$.
Solution: $(2,3),(3,4),(14,13)$

CS 173, Fall 2015 Examlet 4, Part B

NETID:

FIRST:			LAST:									

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.
A
C
E
Reflexive: $\quad \square$ Irreflexive: $\quad \square \sqrt{ }$
(that is, 6 nodes and no arrows
Symmetric: \square Antisymmetric:

B
D
F at all)
Transitive:

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be transitive.

Solution: For any $x, y, z \in A$, if $x R y$ and $y R z$, then $x R z$.
3. (5 points) Let T be the relation defined on set of pairs $(x, y) \in \mathbb{R}^{2}$ such that $(x, y) T(p, q)$ if and only if $x \leq p$ or $y \leq q$. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: This relation is not transitive. We have $(0,0) T(-10,10)$ (look at the second coordinate). We also have $(-10,10) T(-5,-5)$ (look at the first coordinate). But it's not the case that $(0,0) T(-5,-5)$.

CS 173, Fall 2015 Examlet 4, Part B

NETID:

FIRST:
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) A relation is an equivalence relation if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)
Solution: reflexive, symmetric, transitive
3. (5 points) Let T be the relation defined on set of pairs $(x, y) \in \mathbb{R}^{2}$ such that $(x, y) T(p, q)$ if and only if $x p+y q=0$. Is T irreflexive? Informally explain why it is, or give a concrete counter-example showing that it is not.
Solution: This relation is not irreflexive, because $(0,0)$ is related to itself.

CS 173, Fall 2015 Examlet 4, Part B

NETID:
FIRST:
Discussion: \quad Thursday $22 \begin{array}{lllllllllll} & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) A relation is a strict partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)
Solution: irreflexive, antisymmetric, transitive
3. (5 points) Let T be the relation defined on set of pairs $(x, y) \in \mathbb{R}^{2}$ such that $(x, y) T(p, q)$ if and only if $x-p \leq y-q$. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.
Solution: This relation is transitive. Suppose that $(x, y) T(p, q)$ and $(p, q) T(m, n)$. Then $x-p \leq$ $y-q$ and also $p-m \leq q-n$. Adding these two equations together, we get $(x-p)+(p-m) \leq$ $(y-q)+(q-n)$. This simplifies to $x-m \leq y-n$. So $(x, y) T(m, n)$.

CS 173, Fall 2015 Examlet 4, Part B

NETID:

FIRST:

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that R is an equivalence relation on a set A. Using precise set notation, define $[x]_{R}$, i.e. the equivalence class of x under the relation R .
Solution: $[x]_{R}=\{y \in A \mid x R y\}$
3. (5 points) Suppose that T is the relation on the set of integers such that $a T b$ if and only if $\operatorname{gcd}(a, b)=3$. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: This relation is not transitive. Suppose $a=6, b=15$, and $c=12$. Then $\operatorname{gcd}(a, b)=3$ and $\operatorname{gcd}(b, c)=3$, but $\operatorname{gcd}(a, c)=6$.

CS 173, Fall 2015 Examlet 4, Part B

NETID:

LAST:

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 \\ 2\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Can a relation be irreflexive, symmetric, and also transitive? Either give such a relation or briefly explain why it's not possible to construct one.
Solution: Yes, this is possible. However, this must be the empty relation in which no elements are related. (No edges in the graph representation.) If we have $a R b$, then we must have $b R a$ (by symmetry) and so $a R a$ (by transitivity), which is inconsistent with the relation being irreflexive.
3. (5 points) Let \sim be the relation defined on set of pairs $(x, y) \in \mathbb{R}^{2}$ such that $(x, y) \sim(p, q)$ if and only if $x^{2}+y^{2}=p^{2}+q^{2}$. Find three elements in the equivalence class $[(0,1)]$

Solution:

$(0,1),(1,0)),(-1,0)$ (for example)

