CS 173, Fall 2015 Examlet 4, Part B

| FIRST: | | | LAST: |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that R is a partial order on a set A. What additional property is required for R to be a linear order (aka total order)? Give specific details of the property, not just its name.
3. (5 points) Recall that \mathbb{N}^{2} is the set of all pairs of natural numbers. Let's define the equivalence relation \sim on \mathbb{N}^{2} as follows: $(x, y) \sim(p, q)$ if and only $|x-y|=|p-q|$. List three members of $[(2,3)]$.

CS 173, Fall 2015 Examlet 4, Part B

NETID:
FIRST:

LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.
A
C
E
Reflexive: $\quad \square$ Irreflexive: \square
(that is, 6 nodes and no arrows
B
D
F at all)
Symmetric: \square Antisymmetric: \square
Transitive: \square
2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be transitive.
3. (5 points) Let T be the relation defined on set of pairs $(x, y) \in \mathbb{R}^{2}$ such that $(x, y) T(p, q)$ if and only if $x \leq p$ or $y \leq q$. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

CS 173, Fall 2015 Examlet 4, Part B

| FIRST: | | | LAST: |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) A relation is an equivalence relation if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)
3. (5 points) Let T be the relation defined on set of pairs $(x, y) \in \mathbb{R}^{2}$ such that $(x, y) T(p, q)$ if and only if $x p+y q=0$. Is T irreflexive? Informally explain why it is, or give a concrete counter-example showing that it is not.

CS 173, Fall 2015 Examlet 4, Part B

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) A relation is a strict partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)
3. (5 points) Let T be the relation defined on set of pairs $(x, y) \in \mathbb{R}^{2}$ such that $(x, y) T(p, q)$ if and only if $x-p \leq y-q$. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

CS 173, Fall 2015 Examlet 4, Part B

NETID:

FIRST:

LAST:

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that R is an equivalence relation on a set A. Using precise set notation, define $[x]_{R}$, i.e. the equivalence class of x under the relation R .
3. (5 points) Suppose that T is the relation on the set of integers such that $a T b$ if and only if $\operatorname{gcd}(a, b)=3$. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

CS 173, Fall 2015 Examlet 4, Part B

NETID:

FIRST:

LAST:

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Can a relation be irreflexive, symmetric, and also transitive? Either give such a relation or briefly explain why it's not possible to construct one.
3. (5 points) Let \sim be the relation defined on set of pairs $(x, y) \in \mathbb{R}^{2}$ such that $(x, y) \sim(p, q)$ if and only if $x^{2}+y^{2}=p^{2}+q^{2}$. Find three elements in the equivalence class $[(0,1)]$
