

2. (5 points) Suppose that R is a partial order on a set A. What additional property is required for R to be a linear order (aka total order)? Give specific details of the property, not just its name.

3. (5 points) Recall that \mathbb{N}^2 is the set of all pairs of natural numbers. Let's define the equivalence relation \sim on \mathbb{N}^2 as follows: $(x, y) \sim (p, q)$ if and only |x - y| = |p - q|. List three members of [(2, 3)].

CS 1' Exan	73, Fa nlet 4	dl 2015 , Part B	Ν	NETID:]			
FIRST:						LAST:							
Discussion: Thursday			y 2	3	4	5	Friday	9	10	11	12	1	2
1. (5 poi	nts) Ch	eck all boxes	that co	orrect	ly cha	ract	erize this rela	ation	on th	e set {	A, B, C	C, D,	$E,F\}.$
А	С	Е					Reflexive:		Irı	reflexiv	ve:		
В	D	F	(that is, 6 nodes and no arrows at all)			Symmetric:		Aı	ntisym	metric:	:		
			,				Transitive:						

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be transitive.

3. (5 points) Let T be the relation defined on set of pairs $(x, y) \in \mathbb{R}^2$ such that (x, y)T(p, q) if and only if $x \leq p$ or $y \leq q$. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

2. (5 points) A relation is an equivalence relation if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

3. (5 points) Let T be the relation defined on set of pairs $(x, y) \in \mathbb{R}^2$ such that (x, y)T(p, q) if and only if xp + yq = 0. Is T irreflexive? Informally explain why it is, or give a concrete counter-example showing that it is not.

2. (5 points) A relation is a strict partial order if it has which three properties? (Naming the properties is sufficient. You don't have to define them.)

3. (5 points) Let T be the relation defined on set of pairs $(x, y) \in \mathbb{R}^2$ such that (x, y)T(p, q) if and only if $x - p \leq y - q$. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

2. (5 points) Suppose that R is an equivalence relation on a set A. Using precise set notation, define $[x]_R$, i.e. the equivalence class of x under the relation R.

3. (5 points) Suppose that T is the relation on the set of integers such that aTb if and only if gcd(a, b) = 3. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

2. (5 points) Can a relation be irreflexive, symmetric, and also transitive? Either give such a relation or briefly explain why it's not possible to construct one.

3. (5 points) Let ~ be the relation defined on set of pairs $(x, y) \in \mathbb{R}^2$ such that $(x, y) \sim (p, q)$ if and only if $x^2 + y^2 = p^2 + q^2$. Find three elements in the equivalence class [(0, 1)]