CS 173, Fall 2015

 Examlet 4, Part ANETID:

FIRST:
Discussion: \quad Thursday $\quad 2 \quad 3 \quad 4 \quad 5 \quad$ Friday $\begin{array}{lllllllll}9 & 10 & 11 & 12 & 1 & 2\end{array}$
Let T be the relation defined on \mathbb{N}^{2} by

$$
(x, y) T(p, q) \text { if and only if } x \leq p \text { or }(x=p \text { and } y \leq q)
$$

Prove that T is transitive.

Solution:

Let $(x, y),(p, q)$ and (m, n) be pairs of natural numbers. Suppose that $(x, y) T(p, q)$ and $(p, q) T(m, n)$. By the definition of $T,(x, y) T(p, q)$ means that $x \leq p$ or $(x=p$ and $y \leq q)$. Similarly $(p, q) T(m, n)$ implies that $p \leq m$ or $(p=m$ and $q \leq n)$.

There are four cases:
Case 1: $x \leq p$ and $p \leq m$. Then $x \leq m$.
Case 2: $x \leq p$ and $p=m$. Then $x \leq m$.
Case 3: $x=p$ and $p \leq m$. Then $x \leq m$.
Case 4: $x=p$ and $p=m$. In this case, we must also have $y \leq q$ and $q \leq n$. So $x=m$ and $y \leq n$.
In all four cases, $(x, y) T(m, n)$, which is what we needed to show.

CS 173, Fall 2015 Examlet 4, Part A

NETID:

FIRST:
LAST:

Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
The closed interval $[a, b]$ is defined by $[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$. Let J be the set containing all closed intervals $[a, b]$. Let's define the relation F on J as follows:
$[s, t] F[p, q]$ if and only if $q \leq s$

Prove that F is antisymmetric.
Solution: Let $[s, t]$ and $[p, q]$ be two closed intervals. Suppose that $[s, t] F[p, q]$ and $[p, q] F[s, t]$.
By the definition of F, this means that $q \leq s$ and $t \leq p$. By the definition of closed interval, $s \leq t$ and $p \leq q$. So we have

$$
p \leq q \leq s \leq t \leq p
$$

So $p=q=s=t$ and therefore $[s, t]=[p, q]$, which is what we needed to show.

CS 173, Fall 2015 Examlet 4, Part A

NETID:

FIRST:

LAST:

Discussion: \quad Thursday $\quad 2 \quad 3 \quad 4 \quad 5 \quad$ Friday $\begin{array}{lllllllll}9 & 10 & 11 & 12 & 1 & 2\end{array}$
Let $A=\mathbb{N} \times \mathbb{N}$, i.e. pairs of natural numbers.
Define a relation \gg on A as follows:

$$
(x, y) \gg(p, q) \text { if and only if there exists an integer } n \geq 1 \text { such that }(x, y)=(n p, n q) \text {. }
$$

Prove that \gg is antisymmetric.
Solution: Let (x, y) and (p, q) be pairs of natural numbers and suppose that $(x, y) \gg(p, q)$ and $(p, q) \gg(x, y)$.

By the definition of $\gg,(x, y)=(n p, n q)$ and $(p, q)=m(x, y)$, for some positive integers m and n. So $x=n p, y=n q, p=m x$ and $q=m y$.

Combining these equations, we get $x=n(m x)=(n m) x$ and $y=n(m y)=(n m) y$. So $n m=1$. But this means that $n=m=1$ since n and m are positive integers. So $x=p$ and $y=q$. So $(x, y)=(p, q)$, which is what we needed to show.

CS 173, Fall 2015

 Examlet 4, Part ANETID:

FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
Let T be the relation defined on \mathbb{Z}^{2} by

$$
(x, y) T(p, q) \text { if and only if } x<p \text { or }(x=p \text { and } y \leq q)
$$

Prove that T is antisymmetric.

Solution:

Let (x, y) and (p, q) be pairs of integers. Suppose that $(x, y) T(p, q)$ and $(p, q) T(x, y)$. By the definition of $T(x, y) T(p, q)$ means that $x<p$ or $(x=p$ and $y \leq q)$. Similarly, $(p, q) T(x, y)$ means that $p<x$ or ($p=x$ and $q \leq y$).

There are four cases:
Case 1: $x<p$ and $p<x$. This is impossible.
Case 2: $x<p$ and $p=x$ and $q \leq y$. Also impossible.
Case 3: $p<x$ and $x=p$ and $y \leq q$. Impossible as well.
Case 4: $x=p$ and $y \leq q$ and $p=x$ and $q \leq y$. Since $y \leq q$ and $q \leq y, x=y$. So we have $(x, y)=(p, q)$.
$(x, y)=(p, q)$ is true, which is what we needed to show.

CS 173, Fall 2015 Examlet 4, Part A

NETID:
FIRST:

Discussion: \quad Thursday $22 x_{3}$
Suppose that n is some positive integer. Let's define the relation R_{n} on the integers such that $a R_{n} b$ if and only if $a \equiv b+1(\bmod n)$. Prove the following claim

Claim: For any integers x, y, and z, if $x R_{n} y$ and $y R_{n} z$ and $x R_{n} z$, then $n=1$.

You must work directly from the definition of congruence mod k , using the following version of the definition: $x \equiv y(\bmod k)$ iff $x-y=m k$ for some integer m. You may use the following fact about divisibility: for any non-zero integers p and q, if $p \mid q$, then $|p| \leq|q|$.

Solution: Let n be a positive integer and suppose that R is as defined above. Also x, y, and z be integers and suppose that $x R_{n} y$ and $y R_{n} z$ and $x R_{n} z$.

By the definition of R, this means that $x \equiv y+1(\bmod n), y \equiv z+1(\bmod n)$, and $x \equiv z+1(\bmod n)$.
Then $x-(y+1)=k n y-(z+1)=j n$, and $x-(z+1)=p n$, for some integers k, j, and p.
So then $x=y+1+k n, y=z+1+j n$ and $x=z+1+p n$. So $x=z+2+k n+j n$. So $z+1+p n=z+2+k n+j n$. So $p n=1+k n+j n$. So $(p-k-j) n=1$.

We know that $p-k-j$ is an integer, so $(p-k-j) n=1$ implies that $n \mid 1$. Therefore $|n| \leq 1$. But n is known to be a positive integer. So n must equal 1 .

CS 173, Fall 2015

 Examlet 4, Part ANETID:
FIRST:

A closed interval of the real line can be represented as a pair (c, r), where c is the center of the interval and r is its radius. Let $X=\{(c, r) \mid c, r \in \mathbb{R}, r \geq 0\}$ be the set of closed intervals represented this way.

Now, let's define the interval containment \preceq on X as follows

$$
(c, r) \preceq(d, q) \text { if and only if } r \leq q \text { and }|c-d|+r \leq q .
$$

Prove that \preceq is antisymmetric.
Solution: Let (c, r) and (d, q) be elements of X. Suppose that $(c, r) \preceq(d, q)$ and $(d, q) \preceq(c, r)$.
By the definition of $\preceq,(c, r) \preceq(d, q)$ means that $r \leq q$ and $|c-d|+r \leq q$. Similarly, $(d, q) \preceq(c, r)$ means that $q \leq r$ and $|d-c|+q \leq r$.

Since $r \leq q$ and $q \leq r, q=r$. Substituting this into $|c-d|+r \leq q$, we get $|c-d|+r \leq r$. So $|c-d| \leq 0$. Since the absolute value of a real number cannot be negative, this means that $|c-d|=0$, so $c=d$.

Since $q=r$ and $c=d,(c, r)=(d, q)$, which is what we needed to prove.

