CS 173, Fall 2015 Examlet 4, Part A			ETI	D:								
FIRST:					L	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Let T be the relation defined on \mathbb{N}^2 by

(x,y)T(p,q) if and only if $x\leq p$ or $(x=p \text{ and } y\leq q)$

Prove that T is transitive.

CS 173, Fall 2015 Examlet 4, Part A		NI	ETI	D:								
FIRST:					L	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

The closed interval [a, b] is defined by $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$. Let J be the set containing all closed intervals [a, b]. Let's define the relation F on J as follows:

[s,t]F[p,q] if and only if $q \leq s$

Prove that F is antisymmetric.

CS 173, Fall 2015 Examlet 4, Part A	NETID:		
FIRST:		LAST:	

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

Let $A = \mathbb{N} \times \mathbb{N}$, i.e. pairs of natural numbers.

Define a relation \gg on A as follows:

 $(x,y) \gg (p,q)$ if and only if there exists an integer $n \ge 1$ such that (x,y) = (np,nq).

Prove that \gg is antisymmetric.

CS 173, Fall 2015 Examlet 4, Part A		NI	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Let T be the relation defined on \mathbb{Z}^2 by

(x,y)T(p,q) if and only if x < p or $(x = p \text{ and } y \leq q)$

Prove that T is antisymmetric.

CS 173, Fall 2015 Examlet 4, Part A		NF	ETI	D:								
FIRST:					L	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Suppose that n is some positive integer. Let's define the relation R_n on the integers such that aR_nb if and only if $a \equiv b + 1 \pmod{n}$. Prove the following claim

Claim: For any integers x, y, and z, if xR_ny and yR_nz and xR_nz , then n = 1.

You must work directly from the definition of congruence mod k, using the following version of the definition: $x \equiv y \pmod{k}$ iff x - y = mk for some integer m. You may use the following fact about divisibility: for any non-zero integers p and q, if $p \mid q$, then $|p| \leq |q|$.

CS 173, Fall 2015 Examlet 4, Part A			ETI	D:]			
FIRST:				L	AST:							
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

A closed interval of the real line can be represented as a pair (c, r), where c is the center of the interval and r is its radius. Let $X = \{(c, r) \mid c, r \in \mathbb{R}, r \ge 0\}$ be the set of closed intervals represented this way.

Now, let's define the interval containment \preceq on X as follows

 $(c,r) \preceq (d,q)$ if and only if $r \leq q$ and $|c-d| + r \leq q$.

Prove that \leq is antisymmetric.