CS 173, Fall 2015 Examlet 4, Part A

FIRST:		LAST:										
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Let T be the relation defined on \mathbb{N}^{2} by

$$
(x, y) T(p, q) \text { if and only if } x \leq p \text { or }(x=p \text { and } y \leq q)
$$

Prove that T is transitive.

CS 173, Fall 2015 Examlet 4, Part A

NETID:

The closed interval $[a, b]$ is defined by $[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$. Let J be the set containing all closed intervals $[a, b]$. Let's define the relation F on J as follows:

$$
[s, t] F[p, q] \text { if and only if } q \leq s
$$

Prove that F is antisymmetric.

CS 173, Fall 2015

 Examlet 4, Part A
NETID:

FIRST:		LAST:										
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Let $A=\mathbb{N} \times \mathbb{N}$, i.e. pairs of natural numbers.
Define a relation \gg on A as follows:

$$
(x, y) \gg(p, q) \text { if and only if there exists an integer } n \geq 1 \text { such that }(x, y)=(n p, n q) .
$$

Prove that \gg is antisymmetric.

CS 173, Fall 2015 Examlet 4, Part A

FIRST:		LAST:										
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Let T be the relation defined on \mathbb{Z}^{2} by

$$
(x, y) T(p, q) \text { if and only if } x<p \text { or }(x=p \text { and } y \leq q)
$$

Prove that T is antisymmetric.

CS 173, Fall 2015 Examlet 4, Part A

FIRST: LAST:

Suppose that n is some positive integer. Let's define the relation R_{n} on the integers such that $a R_{n} b$ if and only if $a \equiv b+1(\bmod n)$. Prove the following claim

Claim: For any integers x, y, and z, if $x R_{n} y$ and $y R_{n} z$ and $x R_{n} z$, then $n=1$.

You must work directly from the definition of congruence mod k, using the following version of the definition: $x \equiv y(\bmod k)$ iff $x-y=m k$ for some integer m. You may use the following fact about divisibility: for any non-zero integers p and q, if $p \mid q$, then $|p| \leq|q|$.

CS 173, Fall 2015

 Examlet 4, Part AFIRST: LAST:

A closed interval of the real line can be represented as a pair (c, r), where c is the center of the interval and r is its radius. Let $X=\{(c, r) \mid c, r \in \mathbb{R}, r \geq 0\}$ be the set of closed intervals represented this way.

Now, let's define the interval containment \preceq on X as follows

$$
(c, r) \preceq(d, q) \text { if and only if } r \leq q \text { and }|c-d|+r \leq q .
$$

Prove that \preceq is antisymmetric.

