CS 173, Fall 2015 Examlet 3, Part B

NETID:
FIRST:

LAST:

Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and $C,(A \cup B)-C=A \cup(B-C)$.

Solution:

Let $A=\{1,2\}, B=\{3\}$, and $C=\{2\}$.
Then $(A \cup B)-C=\{1,2,3\}-C=\{1,3\}$.
But $A \cup(B-C)=\{1,2\} \cup\{3\}=\{1,2,3\}$
2. (4 points) Check the (single) box that best characterizes each item.

If $x \in A-B$, then $x \in B$.
true for all sets A and B false for all sets A and B
 true for some sets A and B \square

Sets A and B are disjoint

$$
\left.\begin{array}{lll|}
A-B=B-A & \square & A=\bar{B} \\
A \cap B=\{\emptyset\} & \square & A \cap B=\emptyset
\end{array}\right) \quad \square
$$

3. (7 points) In \mathbb{Z}_{9}, find the value of $[5]^{38}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as $[n]$, where $0 \leq n \leq 8$.
Solution: $\quad[5]^{2}=[25]=[7]$
$[5]^{4}=[7]^{2}=[49]=[4]$
$[5]^{8}=[4]^{2}=[16]=[7]$
$[5]^{16}=[7]^{2}=[49]=[4]$
$[5]^{32}=[4]^{2}=[16]=[7]$
$[5]^{38}=[5]^{32} \cdot[5]^{4} \cdot[5]^{2}=[7] \cdot[4] \cdot[7]=[28] \cdot[7]=1 \cdot[7]=[7]$

CS 173, Fall 2015 Examlet 3, Part B

NETID:

FIRST:
LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (4 points) $\quad A=\{$ fox, tiger, wolf, eagle, cat $\} \quad B=\{3,4\} \quad C=\{6,7\}$

Solution:

$A \times(B \cap C)=A \times \emptyset=\emptyset$
$|A \times(B \cup C)|=4 \times 5=20$
2. (4 points) Check the (single) box that best characterizes each item.
$A \times B=B \times A \quad$ true for all sets A and B true for some sets A and B

false for all sets A and B \square
$\emptyset \subseteq A$

true for all sets A	$\boxed{ } 1$
false for all sets A	\square

true for some sets A

3. (7 points) In \mathbb{Z}_{11}, find the value of $[7]^{38}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as $[n]$, where $0 \leq n \leq 10$.

Solution:

$[7]^{2}=[49]=[5]$
$[7]^{4}=\left([7]^{2}\right)^{2}=[5]^{2}=[25]=[3]$
$[7]^{8}=\left([7]^{4}\right)^{2}=[3]^{2}=[9]=[-2]$
$[7]^{1} 6=\left([7]^{8}\right)^{2}=[-2]^{2}=[4]$
$[7]^{3} 2=\left([7]^{16}\right)^{2}=[4]^{2}=[16]=[5]$
$[7]^{38}=[7]^{32} \cdot[7]^{4} \cdot[7]^{2}=[5] \cdot[3] \cdot[5]=[15] \cdot[5]=[4] \cdot[5]=[20]=[9]$

CS 173, Fall 2015 Examlet 3, Part B

NETID:

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, if $A \subseteq B$ then $A \times C \subseteq B \times C$.
Solution: This is true. Suppose we pick (x, y) from $A \times C$. Then x is in A and y is in C. Since x is in A and $A \subseteq B, x$ is in B. So (x, y) is in $B \times C$.
2. (4 points) Check the (single) box that best characterizes each item.

3. (7 points) In \mathbb{Z}_{11}, find the value of $[7]^{40}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as $[n]$, where $0 \leq n \leq 10$.
Solution:
$[7]^{2}=[49]=[5]$
$[7]^{4}=\left([7]^{2}\right)^{2}=[5]^{2}=[25]=[3]$
$[7]^{8}=\left([7]^{4}\right)^{2}=[3]^{2}=[9]=[-2]$
$[7]^{1} 6=\left([7]^{8}\right)^{2}=[-2]^{2}=[4]$
$[7]^{3} 2=\left([7]^{16}\right)^{2}=[4]^{2}=[16]=[5]$
$[7]^{40}=[7]^{32} \cdot[7]^{8}=[5] \cdot[-2]=[-10]=[1]$

CS 173, Fall 2015 Examlet 3, Part B

NETID:

FIRST:
LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (4 points) $\quad A=\{4,5,9\} \quad B=\{$ arya, bran $\} \quad C=\{2,4,10\}$

Solution:

$(A \cap C) \times B=\{4\} \times B=\{(4$, arya $),(4$, bran $)\}$
$|A \times B \times C|=3 \times 2 \times 3=18$
2. (4 points) Check the (single) box that best characterizes each item.
$\{13,14,15\} \times \emptyset=$

$\{\emptyset\}$ \square
$\{13,14,15\}$ \square
$\emptyset \in A$ true for all sets A
 true for some sets A
 false for all sets A

3. (7 points) In \mathbb{Z}_{13}, find the value of $[7]^{19}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as $[n]$, where $0 \leq n \leq 12$.

Solution:

$[7]^{2}=[49]=[10]$
$[7]^{4}=[100]=[9]$
$[7]^{8}=[9]^{2}=[81]=[3]$
$[7]^{16}=[3]^{2}=[9]$
$[7]^{19}=[7]^{16} \cdot[7][2] \cdot[7]=[9] \cdot[10] \cdot[7]$
$[9] \cdot[10] \cdot[7]=[90] \cdot[7]=[-1] \cdot[7]=[-7]=[6]$
So $[7]^{19}=[6]$

CS 173, Fall 2015 Examlet 3, Part B

NETID:

FIRST:
LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (4 points $\quad A=\{$ apple, lemon $\} \quad B=\{4,5,9\} \quad C=\{($ apple, 4$),(5$, lemon $)\}$

Solution:

$\emptyset \times B=\emptyset$
$(A \times B) \cap C=\{($ apple, 4$)\}$
2. (4 points) Check the (single) box that best characterizes each item.

3. (7 points) In \mathbb{Z}_{11}, find the value of $[8]^{37}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as $[n]$, where $0 \leq n \leq 10$.

Solution:

$[8]^{2}=[64]=9$
$[8]^{4}=[9]^{2}=[81]=[4]$
$[8]^{8}=[4]^{2}=[16]=[5]$
$[8]^{16}=[5]^{2}=[3]$
$[8]^{32}=[3]^{2}=[9]$
$[8]^{37}=[8]^{32} \cdot[8]^{4} \cdot[8]=[9] \cdot[4] \cdot[8]=[36] \cdot[8]=[3] \cdot[8]=[24]=[2]$

CS 173, Fall 2015 Examlet 3, Part B

NETID:

FIRST:
LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (4 points) $\quad A=\{$ water, beer, wine $\} \quad B=\{$ cup, $\operatorname{mug}\} \quad C=\{$ wine, (water, beer) $\}$

Solution:

$A \times B=\{$ (water, cup), (beer, cup), (wine, cup), (water, mug), (beer, mug), (wine, mug) $\}$
$A \cap C=\{$ wine $\}$
2. (4 points) Check the (single) box that best characterizes each item.
\emptyset is an element of $\mathbb{Z} \quad$ both \square a subset of $\mathbb{Z} \quad \sqrt{ }$ neither \square

$$
\{1,2\} \cup \emptyset=
$$

$\emptyset \quad \square$
$\{(1, \emptyset),(2, \emptyset)\} \quad \square$
$\{1,2, \emptyset\}$ \square
$\{\emptyset\} \quad \square$
$\{1,2\}$
$\sqrt{ }$
undefined $\quad \square$
3. (7 points) In \mathbb{Z}_{13}, find the value of $[7]^{21}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as $[n]$, where $0 \leq n \leq 12$.
Solution:

$$
\begin{aligned}
& {[7]^{2}=[49]=[10]=[-3]} \\
& {[7]^{4}=\left([7]^{2}\right)^{2}=[-3]^{2}=[9]} \\
& {[7]^{8}=\left([7]^{4}\right)^{2}=[9]^{2}=[81]=[3]} \\
& {[7]^{16}=\left([7]^{8}\right)^{2}=[3]^{2}=[9]} \\
& {[7]^{21}=[7]^{16} \cdot[7]^{4} \cdot[7]=[9] \cdot[9] \cdot[7]=[81] \cdot[7]=[3] \cdot[7]=[21]=[8]}
\end{aligned}
$$

