CS 173, Fa Examlet 3	all 2015 , Part A	NI	ETI	D:]			
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
$A=\{(p,q)\in\mathbb{Z}^2$	3pq + 15p - 5q	-25	$5 \ge 0$	}								
$B = \{(s,t) \in \mathbb{Z}^2$	$\mid t \ge 0\}$											
$C=\{(x,y)\in\mathbb{Z}^2$	$\mid x \ge 0\}$											

Prove that $(A \cap B) \subseteq C$.

Solution: Proof: Let (p,q) be an element of \mathbb{Z}^2 and suppose that (p,q) is an element of $A \cap B$.

Then (p,q) is an element of A, so $3pq + 15p - 5q - 25 \ge 0$. But (p,q) is also an element of B, so $q \ge 0$.

Notice that 3pq + 15p - 5q - 25 = (q+5)(3p-5). So we know that $(q+5)(3p-5) \ge 0$. So q+5 and 3p-5 are either both non-negative or both non-positive. Since $q \ge 0$, $q+5 \ge 0$. So we must have $3p-5 \ge 0$.

Now, if $3p-5 \ge 0$, then $3p \ge 5$. So $p \ge \frac{5}{3}$, and therefore $p \ge 0$.

Since (p,q) be an element of \mathbb{Z}^2 and $p \ge 0$, (p,q) must be an element of C, which is what we needed to show.

CS 173, Fa Examlet 3	all 2015 , Part A	NI	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
$A = \{\lambda(0,3) + (1$	$(-\lambda)(2,4) \mid \lambda \in$	Ξ [0, 1	1]}									
$B = \{(x,y) \in \mathbb{R}^2$	$ x \le y\}$											
Prove that $A \subseteq B$	3.											

Solution:

Let $(x, y) \in A$. Then $(x, y) = \lambda(0, 3) + (1 - \lambda)(2, 4)$ for some $\lambda \in [0.1]$. So $x = 2 - 2\lambda$ and $y = 3\lambda + 4(1 - \lambda) = 4 - \lambda$. So $y = x + 2 + \lambda$

Since $\lambda \in [0.1], \lambda \ge 0$.

So $y = x + 2 + \lambda \ge x$.

Since $x \leq y$, $(x, y) \in B$, which is what we needed to show.

CS 173, Fall 2015 Examlet 3, Part A			ETI	D:								
FIRST:					AST:							
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
$A=\{(x,y)\in \mathbb{R}^2$	$ y = x^2 - 3x +$	- 2}										
$B=\{(p,q)\in\mathbb{R}^2$	$\mid p \ge 0 \}$											

- $C = \{(m,n) \in \mathbb{R}^2 \mid n \ge 1\}$
- Prove that $A \subseteq B \cup C$.

Solution:

Suppose that (x, y) is an element of A. Then $y = x^2 - 3x + 2 = (x - 1)(x - 2)$. There are two cases: Case 1: $x \ge 0$. Then $(x, y) \in B$ so $(x, y) \in B \cup C$.

Case 2: $x \leq 0$. Then $x - 1 \leq -1$ and $x - 2 \leq -2$. So $y = (x - 1)(x - 2) \geq 2 \geq 1$. So $(x, y) \in C$. And therefore $(x, y) \in B \cup C$.

In both cases $(x, y) \in B \cup C$, which is what we needed to show.

Prove that $A \cap \mathbb{Z}^2 \subseteq B$.

Use the following definition of congruence mod k: if s, t, k are integers, k positive, then $s \equiv t \pmod{k}$ if and only if s = t + nk for some integer n.

Solution: Let (x, y) be an element of $A \cap \mathbb{Z}^2$. Then (x, y) is an element of A and, also, both x and y are integers.

By the definition of Z, $x = \lfloor 3y + 5 \rfloor$. Since y is an integer, 3y + 5 must also be an integer. So $\lfloor 3y + 5 \rfloor = 3y + 5$. Therefore, x = 3y + 5.

Now, consider 2x + y.

$$2x + y = 2(3y + 5) + y = 7y + 10 = 7(y + 1) + 3$$

y + 1 is an integer, since y is an integer. So this means that $2x + y \equiv 3 \pmod{7}$. Therefore, (x, y) is an element of B, which is what we needed to show.

Solution: Let $(x, y) \in \mathbb{R}$ and suppose that $(x, y) \in B \cap C$. Then $(x, y) \in B$ and $(x, y) \in C$.

By the definitions of *B* and *C*, this means that $(x - 1)^2 + y^2 = 4$ and $(x + 1)^2 + y^2 = 4$. So $(x - 1)^2 + y^2 = (x + 1)^2 + y^2$, which means that $(x - 1)^2 = (x + 1)^2$. Multiplying out the two sides, we get $x^2 - 2x + 2 = x^2 + 2x + 2$ So -2x = 2x, so 4x = 0, so x = 0.

Since x = 0, $(x, y) \in A$, which is what we needed to show.

[This shows more algebra steps than I'd expect for full credit.]

CS 173, Fa Examlet 3,	dl 2015 , Part A	NI	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
$A = \{\lambda(3,2) + (1$	$(-\lambda)(5,0) \mid \lambda \in$	∃ [0, 1	L]}									
$B = \{(x,y) \in \mathbb{R}^2$	$ x \ge y\}$											
Prove that $A \subseteq E$	3.											
Solution:												

Let $(x, y) \in A$. Then $(x, y) = \lambda(3, 2) + (1 - \lambda)(5, 0)$ for some $\lambda \in [0.1]$. So $x = 3\lambda + 5(1 - \lambda) = 5 - 2\lambda$ and $y = 2\lambda$.

Since $\lambda \in [0.1], \lambda \leq 1$. So $4\lambda \leq 5\lambda \leq 5$. So $5 - 4\lambda \geq 0$. And therefore $x = 5 - 2\lambda \geq 2\lambda = y$.

Since $x \ge y$, $(x, y) \in B$, which is what we needed to show.