CS 173, Fall 2015 Examlet 3, Part A

NETID:

FIRST:

Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
$A=\left\{(p, q) \in \mathbb{Z}^{2} \mid 3 p q+15 p-5 q-25 \geq 0\right\}$
$B=\left\{(s, t) \in \mathbb{Z}^{2} \mid t \geq 0\right\}$
$C=\left\{(x, y) \in \mathbb{Z}^{2} \mid x \geq 0\right\}$
Prove that $(A \cap B) \subseteq C$.
Solution: Proof: Let (p, q) be an element of \mathbb{Z}^{2} and suppose that (p, q) is an element of $A \cap B$.
Then (p, q) is an element of A , so $3 p q+15 p-5 q-25 \geq 0$. But (p, q) is also an element of B , so $q \geq 0$.
Notice that $3 p q+15 p-5 q-25=(q+5)(3 p-5)$. So we know that $(q+5)(3 p-5) \geq 0$. So $q+5$ and 3p-5 are either both non-negative or both non-positive. Since $q \geq 0, q+5 \geq 0$. So we must have $3 p-5 \geq 0$.

Now, if $3 p-5 \geq 0$, then $3 p \geq 5$. So $p \geq \frac{5}{3}$, and therefore $p \geq 0$.
Since (p, q) be an element of \mathbb{Z}^{2} and $p \geq 0,(p, q)$ must be an element of C , which is what we needed to show.

CS 173, Fall 2015 Examlet 3, Part A

NETID:

| FIRST: | | | | LAST: | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Discussion: | Thursday | 2 | 3 | 4 | 5 | Friday | 9 | 10 | 11 | 12 | 1 | 2 |

$$
\begin{aligned}
& A=\{\lambda(0,3)+(1-\lambda)(2,4) \mid \lambda \in[0,1]\} \\
& B=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leq y\right\}
\end{aligned}
$$

Prove that $A \subseteq B$.

Solution:

Let $(x, y) \in A$. Then $(x, y)=\lambda(0,3)+(1-\lambda)(2,4)$ for some $\lambda \in[0.1]$. So $x=2-2 \lambda$ and $y=3 \lambda+4(1-\lambda)=4-\lambda$. So $y=x+2+\lambda$

Since $\lambda \in[0.1], \lambda \geq 0$.
So $y=x+2+\lambda \geq x$.
Since $x \leq y,(x, y) \in B$, which is what we needed to show.

CS 173, Fall 2015

 Examlet 3, Part ANETID:

| FIRST: | | LAST: | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Discussion: | Thursday | 2 | 3 | 4 | 5 | Friday | 9 | 10 | 11 | 12 | 1 | 2 |

$A=\left\{(x, y) \in \mathbb{R}^{2} \quad \mid y=x^{2}-3 x+2\right\}$
$B=\left\{(p, q) \in \mathbb{R}^{2} \mid p \geq 0\right\}$
$C=\left\{(m, n) \in \mathbb{R}^{2} \mid n \geq 1\right\}$
Prove that $A \subseteq B \cup C$.

Solution:

Suppose that (x, y) is an element of A. Then $y=x^{2}-3 x+2=(x-1)(x-2)$. There are two cases:
Case 1: $x \geq 0$. Then $(x, y) \in B$ so $(x, y) \in B \cup C$.
Case 2: $x \leq 0$. Then $x-1 \leq-1$ and $x-2 \leq-2$. So $y=(x-1)(x-2) \geq 2 \geq 1$. So $(x, y) \in C$. And therefore $(x, y) \in B \cup C$.

In both cases $(x, y) \in B \cup C$, which is what we needed to show.

CS 173, Fall 2015

 Examlet 3, Part ANETID:

FIRST:
LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
$A=\left\{(x, y) \in \mathbb{R}^{2} \mid x=\lfloor 3 y+5\rfloor\right\}$
$B=\left\{(p, q) \in \mathbb{Z}^{2} \mid 2 p+q \equiv 3(\bmod 7)\right\}$
Prove that $A \cap \mathbb{Z}^{2} \subseteq B$.
Use the following definition of congruence $\bmod k:$ if s, t, k are integers, k positive, then $s \equiv t(\bmod k)$ if and only if $s=t+n k$ for some integer n.

Solution: Let (x, y) be an element of $A \cap \mathbb{Z}^{2}$. Then (x, y) is an element of A and, also, both x and y are integers.

By the definition of $Z, x=\lfloor 3 y+5\rfloor$. Since y is an integer, $3 y+5$ must also be an integer. So $\lfloor 3 y+5\rfloor=3 y+5$. Therefore, $x=3 y+5$.

Now, consider $2 x+y$.

$$
2 x+y=2(3 y+5)+y=7 y+10=7(y+1)+3
$$

$y+1$ is an integer, since y is an integer. So this means that $2 x+y \equiv 3(\bmod 7)$. Therefore, (x, y) is an element of B, which is what we needed to show.

CS 173, Fall 2015 Examlet 3, Part A

NETID:

FIRST:

LAST:

Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
$A=\{(p, q) \in \mathbb{R} \mid p=0\}$
$B=\left\{(x, y) \in \mathbb{R} \mid(x-1)^{2}+y^{2}=4\right\}$
$C=\left\{(s, t) \in \mathbb{R} \mid(s+1)^{2}+t^{2}=4\right\}$
Prove that $B \cap C \subseteq \mathrm{~A}$.
Solution: Let $(x, y) \in \mathbb{R}$ and suppose that $(x, y) \in B \cap C$. Then $(x, y) \in B$ and $(x, y) \in C$.
By the definitions of B and C, this means that $(x-1)^{2}+y^{2}=4$ and $(x+1)^{2}+y^{2}=4$. So $(x-1)^{2}+y^{2}=(x+1)^{2}+y^{2}$, which means that $(x-1)^{2}=(x+1)^{2}$. Multiplying out the two sides, we get $x^{2}-2 x+2=x^{2}+2 x+2$ So $-2 x=2 x$, so $4 x=0$, so $x=0$.

Since $x=0,(x, y) \in A$, which is what we needed to show.
[This shows more algebra steps than I'd expect for full credit.]

CS 173, Fall 2015 Examlet 3, Part A

NETID:
FIRST:

Discussion: \quad Thursday $\quad 2 \quad 3 \quad 4 \quad 5 \quad$ Friday $\begin{array}{lllllllll}9 & 10 & 11 & 12 & 1 & 2\end{array}$
$A=\{\lambda(3,2)+(1-\lambda)(5,0) \mid \lambda \in[0,1]\}$
$B=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq y\right\}$
Prove that $A \subseteq B$.

Solution:

Let $(x, y) \in A$. Then $(x, y)=\lambda(3,2)+(1-\lambda)(5,0)$ for some $\lambda \in[0.1]$. So $x=3 \lambda+5(1-\lambda)=5-2 \lambda$ and $y=2 \lambda$.

Since $\lambda \in[0.1], \lambda \leq 1$. So $4 \lambda \leq 5 \lambda \leq 5$. So $5-4 \lambda \geq 0$. And therefore $x=5-2 \lambda \geq 2 \lambda=y$.
Since $x \geq y,(x, y) \in B$, which is what we needed to show.

