CS 173, Fall 2015 Examlet 2, Part B

FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

For any positive integers s, t, p, q, if $s \equiv t(\bmod p)$ and $q \mid p$, then $s \equiv t(\bmod q)$.
Solution: This is true.
Informally, since q is smaller, congruence $\bmod q$ makes coarser distinctions than congruence mod q. So this is in the right direction and the relationship $q \mid p$ ensures that the details work out.
More formally, from $s \equiv t(\bmod p)$ and $q \mid p$, we get that $s=t+p k$ and $p=q j$, where k and j are integers. So $s=t+q(j k)$, which means that $s \equiv t(\bmod q)$.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1183,351)$. Show your work.

Solution:

$1183-3 \times 351=1183-1053=130$
$351-2 \times 130=351-260=91$
$130-91=39$
$91-3 \times 39=91-78=13$
$39-3 \times 13=0$
So the GCD is 13 .
3. (4 points) Check the (single) box that best characterizes each item.
$-7 \equiv 13(\bmod 6) \quad$ true \square false $\square \sqrt{ }$

For any positive integers p and q,
if $\operatorname{lcm}(p, q)=p q$, then p and q are relatively prime.

false \square

CS 173, Fall 2015 Examlet 2, Part B

FIRST:
Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For all natural numbers a and b, if $a \mid b$ and $b \mid a$, then $a=b$.
Solution: This is true. If $a \mid b$ and $b \mid a$, then $b=p a$ and $a=q b$, where p and q are integers. Since a and b are natural numbers and therefore not negative, p and q cannot be negative. So $b=p q b$, so $p q=1$. So $p=q=1$ and therefore $a=b$. [This is more detail than you'd need for full credit.]
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1609,563)$. Show your work.

Solution:

$1609-2 \times 563=1609-1126=483$
$563-483=80$
$483-6 \times 80=3$
$80-26 \times 3=80-78=2$
$3-2=1$
$2-2 \times 1=0$
So the GCD is 1 .
3. (4 points) Check the (single) box that best characterizes each item.

For any positive integers p, q, and k, if $p \equiv q(\bmod k)$, then $p^{2} \equiv q^{2}(\bmod k)$
true $\quad \sqrt{ }$ false \square

Zero is a multiple of 7 .
true

false \square

CS 173, Fall 2015 Examlet 2, Part B

FIRST:
Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For all positive integers a, b, and c, if $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(b, c)=1$, then $\operatorname{gcd}(a, c)=1$.

Solution: This is false. Consider $a=c=3$ and $b=2$. Then a and b have no common factors, i.e. $\operatorname{gcd}(a, b)=1$. Also b and c have no common factors, i.e. $\operatorname{gcd}(b, c)=1$. But $\operatorname{gcd}(a, c)=3$.
2. (6 points) Use the Euclidean algorithm to compute gcd $(1012,299)$. Show your work.

Solution: $\quad 1012-3 \times 299=1012-897=115$
$299-2 \times 115=299-230=69$
$115-69=46$
$69-46=23$
$46-2 \times 23=0$
So $\operatorname{gcd}(1012,299)=23$
3. (4 points) Check the (single) box that best characterizes each item.
$k \equiv-k(\bmod k) \quad$ true for all $k \quad \square \sqrt{ } \quad$ true for some $k \quad \square \quad$ false for all $k \quad \square$

$\operatorname{gcd}(0,0) \quad 0 \quad \mathrm{k} \quad \square \quad$ undefined \quad| |
| --- |

CS 173, Fall 2015 Examlet 2, Part B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is false, or give a concrete example showing that it is true.

There is an integer n such that $n \equiv 5(\bmod 6)$ and $n \equiv 2(\bmod 10)$?
Solution: There is no such n. If $n \equiv 5(\bmod 6)$ and $n \equiv 2(\bmod 10)$, then $n=5+6 k$ and $n=2+10 j$, where k and j are integers. So $5+6 k=2+10 j$. This implies that $3=10 j-6 k$ which is impossible because the right side is divisible by 2 and the left side isn't.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1568,546)$. Show your work.

Solution:

$1568-546 \times 2=1568-1092=476$
$546-476=70$
$476-70 \times 6=476-420=56$
$70-56=14$
$56-14 \times 3=0$
So the GCD is 14 .
3. (4 points) Check the (single) box that best characterizes each item.

For any integers p and q, if $p \mid q$ then $p \leq q . \quad$ true \square false $\square \sqrt{ }$

Two positive integers p and q are relatively prime if and only if $\operatorname{gcd}(p, q)>1$.
true \square false $\square \sqrt{ }$

CS 173, Fall 2015 Examlet 2, Part B

FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For any positive integers p and $q, p \equiv q(\bmod 1)$.
Solution: This is true. $p \equiv q(\bmod 1)$ is equivalent to $p-q=n \times 1=n$ for some integer n. But we can always find an integer that will make this equation balance!
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(7839,1474)$. Show your work.

Solution:

$7839-5 \times 1474=7839-7370=469$
$1474-3 \times 469=1474-1407=67$
$469-7 \times 67=0$
So the GCD is 67 .
3. (4 points) Check the (single) box that best characterizes each item.

Two positive integers p and q are relatively prime if and only if $\operatorname{gcd}(p, q)=1$.
true $\boxed{\checkmark}$
false \square
$\operatorname{gcd}(p, q)=\frac{p q}{\operatorname{lcm}(p, q)}$
true for all $p, q \quad \boxed{ }$
true for some $p, q \quad \square$
where p and q are positive integers
true for p, q prime \square

CS 173, Fall 2015 Examlet 2, Part B

FIRST:

Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) Let a and b be integers, $b>0$. We used two formulas to define the quotient q and the remainder r of a divided by b. One of these is $a=b q+r$. What is the other?
Solution: $0 \leq r<b$
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(221,1224)$. Show your work.

Solution:

$1224-5 \times 221=1224-1105=119$
$221-119=102$
$119-102=17$
$102-17 \times 6=0$
So the GCD is 17 .
3. (4 points) Check the (single) box that best characterizes each item.

For any positive integers p and q, if $\operatorname{lcm}(p, q)=p q$, then p and q are relatively prime.
true \square false \square $25 \equiv 4(\bmod 7) \quad$ true $\quad \sqrt{ }$ false \square

