CS 173, Fall 2015 Examlet 2, Part B

FIRST:

LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

For any positive integers s, t, p, q, if $s \equiv t(\bmod p)$ and $q \mid p$, then $s \equiv t(\bmod q)$.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1183,351)$. Show your work.
3. (4 points) Check the (single) box that best characterizes each item.

$$
-7 \equiv 13(\bmod 6)
$$

> true
\square false \square

For any positive integers p and q, if $\operatorname{lcm}(p, q)=p q$, then p and q are relatively prime.
true \square false \square

CS 173, Fall 2015 Examlet 2, Part B

NETID:

LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For all natural numbers a and b, if $a \mid b$ and $b \mid a$, then $a=b$.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1609,563)$. Show your work.
3. (4 points) Check the (single) box that best characterizes each item.

For any positive integers p, q, and k, if $p \equiv q(\bmod k)$, then $p^{2} \equiv q^{2}(\bmod k)$

\square false \square

CS 173, Fall 2015 Examlet 2, Part B

FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For all positive integers a, b, and c, if $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(b, c)=1$, then $\operatorname{gcd}(a, c)=1$.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1012,299)$. Show your work.
3. (4 points) Check the (single) box that best characterizes each item.
$k \equiv-k(\bmod k)$
true for all $k \quad \square$
true for some k \square false for all k \square $\operatorname{gcd}(0,0)$ \square k \square undefined \square

CS 173, Fall 2015 Examlet 2, Part B

FIRST:

LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is false, or give a concrete example showing that it is true.

There is an integer n such that $n \equiv 5(\bmod 6)$ and $n \equiv 2(\bmod 10)$?
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1568,546)$. Show your work.
3. (4 points) Check the (single) box that best characterizes each item.

$$
\text { For any integers } p \text { and } q \text {, if } p \mid q \text { then } p \leq q . \quad \text { true } \quad \square \quad \text { false } \quad \square
$$

Two positive integers p and q are relatively prime if and only if $\operatorname{gcd}(p, q)>1$. \square false \square

CS 173, Fall 2015 Examlet 2, Part B

NETID:

LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For any positive integers p and $q, p \equiv q(\bmod 1)$.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(7839,1474)$. Show your work.
3. (4 points) Check the (single) box that best characterizes each item.

Two positive integers p and q are relatively prime if and only if $\operatorname{gcd}(p, q)=1$.
$\operatorname{gcd}(p, q)=\frac{p q}{\operatorname{lcm}(p, q)}$
where p and q are positive integers
true \square false \square
true for all $p, q \quad \square \quad$ true for some $p, q \quad \square$
true for p, q prime $\quad \square$

CS 173, Fall 2015 Examlet 2, Part B

NETID:

FIRST:

LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) Let a and b be integers, $b>0$. We used two formulas to define the quotient q and the remainder r of a divided by b. One of these is $a=b q+r$. What is the other?
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(221,1224)$. Show your work.
3. (4 points) Check the (single) box that best characterizes each item.

For any positive integers p and q, if $\operatorname{lcm}(p, q)=p q$, then p and q are relatively prime.
true \square false \square $25 \equiv 4(\bmod 7)$ true \square false \square

