CS 173, Fall 2015 Examlet 2, Part B				D:]			
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

For any positive integers s, t, p, q, if $s \equiv t \pmod{p}$ and $q \mid p$, then $s \equiv t \pmod{q}$.

2. (6 points) Use the Euclidean algorithm to compute gcd(1183, 351). Show your work.

$-7 \equiv 13 \pmod{6}$	true		false		
For any positive integers p and q , if $lcm(p,q) = pq$, then p and q are relatively pri	me.	true		false	

CS 173, Fa Examlet 2,	ll 2015 , Part B	NF	ETI	D:]			
FIRST:					L	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Claim: For all natural numbers a and b, if $a \mid b$ and $b \mid a$, then a = b.

2. (6 points) Use the Euclidean algorithm to compute gcd(1609, 563). Show your work.

For any positive integers p, q , and k , if $p \equiv q \pmod{k}$, then $p^2 \equiv q^2 \pmod{k}$		true		false	
Zero is a multiple of 7.	true		false		

CS 173, Fa Examlet 2,	ll 2015 Part B	NF	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Claim: For all positive integers a, b, and c, if gcd(a, b) = 1 and gcd(b, c) = 1, then gcd(a, c) = 1.

2. (6 points) Use the Euclidean algorithm to compute gcd(1012, 299). Show your work.

$k \equiv -k \pmod{k}$) true	for all k	true for some k	false for all k
$\gcd(0,0)$	0	k 🗌	undefined	

CS 173, Fa Examlet 2,	NF	ETI	D:									
FIRST:					L	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

There is an integer n such that $n \equiv 5 \pmod{6}$ and $n \equiv 2 \pmod{10}$?

2. (6 points) Use the Euclidean algorithm to compute gcd(1568, 546). Show your work.

For any integers p and q , if $p \mid q$ then $p \leq q$.	true	false
Two positive integers p and q are relatively prime if and only if $gcd(p,q) > 1$.	true	false

CS 173, Fall 2015 Examlet 2, Part B				D:								
FIRST:					\mathbf{L}	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Claim: For any positive integers p and q, $p \equiv q \pmod{1}$.

2. (6 points) Use the Euclidean algorithm to compute gcd(7839, 1474). Show your work.

Two positive integers p and q are relative prime if and only if $gcd(p,q) = 1$.	vely true	false		
$gcd(p,q) = \frac{pq}{lcm(p,q)}$	true for all p, q		true for some p, q	
where p and q are positive integers	true for p, q prime			

CS 173, Fall 2015 Examlet 2, Part B				D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (5 points) Let a and b be integers, b > 0. We used two formulas to define the quotient q and the remainder r of a divided by b. One of these is a = bq + r. What is the other?

2. (6 points) Use the Euclidean algorithm to compute gcd(221, 1224). Show your work.

For any positive integ if $lcm(p,q) = pq$, then	true	false		
$25 \equiv 4 \pmod{7}$	true	false	7	