CS 173, Fall 2015 Examlet 12, Part B			ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

(9 points) Suppose that R is a relation on \mathbb{Z} which is reflexive and symmetric, but not transitive. Let's define $T(n) = \{a \in \mathbb{Z} \mid aRn\}$. Notice that $n \in T(n)$ for any integer n. The collection of all sets T(n) does not form a partition of \mathbb{Z} . Explain (informally but clearly) why the fact that R is not transitive can cause one of the partition properties to fail.

(6 points) Check the (single) box that best characterizes each item.

CS 173, Fall 2015 Examlet 12, Part B			ETI	D:								
FIRST:					\mathbf{L}	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Graph G with set of nodes V is shown below. Recall that deg(n) is the degree of node n. Let's define $f : \mathbb{N} \to \mathbb{P}(V)$ by $f(k) = \{n \in V : \deg(n) = k\}$. Also let $T = \{f(k) \mid k \in \mathbb{N}\}$.

(6 points) Fill in the following values:

(7 points) Is T a partition of V? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition.

(2 points) State the definition of $\binom{n}{k}$, i.e. express $\binom{n}{k}$ in terms of more basic arithmetic operations.

A D F G

Suppose that deg(n) is the degree of node n. Now let's define a function $f: V \to \mathbb{P}(V)$ by $f(p) = \{n \in V : \deg(n) = \deg(p)\}$. Then let $P = \{f(p) \mid p \in V\}$.

(6 points) Fill in the following values:

- f(A) =
- f(C) =
- P =

(7 points) Is P a partition of V? For each of the conditions required to be a partition, briefly explain why P does or doesn't satisfy that condition.

(2 points) Check the (single) box that best characterizes each item.

CS 173, Fall 2015 Examlet 12, Part B			ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

(9 points) Suppose that A is a set and P is a collection of subsets of A. Using precise language and/or notation, state the conditions P must satisfy to be a partition of A.

(6 points) Check the (single) box that best characterizes each item.

CS 173, Fall 2015 Examlet 12, Part B			ETI	D:								
FIRST:					L	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Let $f : \mathbb{R}^2 \to \mathbb{P}(\mathbb{R}^2)$ be defined by $f(x, y) = \{(p, q) \in \mathbb{R}^2 \mid \exists \alpha \in \mathbb{R}, (p, q) = \alpha(x, y)\}.$ Let $T = \{f(x, y) \mid (x, y) \in \mathbb{R}^2\}.$

(6 points) Answer the following questions:

f(0,0) =

Describe (at a high level) the elements of f(0, 36):

Give an element of $\mathbb{P}(\mathbb{R}^2) - T$:

(7 points) Is T a partition of \mathbb{R}^2 ? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition.

(2 points) Check the (single) box that best characterizes each item.

[Buggy question: answer depends on			
whether you assumed A could be empty.]			
Let A be a set, $\{A\}$ is a partition of A.	always	sometimes	never

Define $f: M \to \mathbb{P}(V)$ by $f(n) = \{p \in V : d(p, B) < n\}$, where d(a, b) is the (shortest-path) distance between a and b. Let $P = \{f(n) \mid n \in M\}$.

(6 points) Fill in the following values:

f(0) = f(1) =

P =

(7 points) Is P a partition of V? For each of the conditions required to be a partition, briefly explain why P does or doesn't satisfy that condition.

(2 points) Check the (single) box that best characterizes each item.

(0)					
$\begin{pmatrix} 0\\ 0 \end{pmatrix}$	-1	0	1	2	undefined