CS 173, Fall 2015 Examlet 12, Part B
 NETID:

FIRST:

Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(9 points) Suppose that R is a relation on \mathbb{Z} which is reflexive and symmetric, but not transitive. Let's define $T(n)=\{a \in \mathbb{Z} \mid a R n\}$. Notice that $n \in T(n)$ for any integer n. The collection of all sets $T(n)$ does not form a partition of \mathbb{Z}. Explain (informally but clearly) why the fact that R is not transitive can cause one of the partition properties to fail.
(6 points) Check the (single) box that best characterizes each item.

How many ways can I choose 5 bagels from among 10 varieties, if I can have any number of bagels from any type?

$\frac{10!}{5!5!}$	\square	$\frac{14!}{10!4!}$	\square	$\frac{14!}{9!5!}$
$\frac{15!}{10!5!}$	\square	10^{5}	\square	5^{10}

If $n \geq k \geq 0$,
then $\binom{n}{k}=\binom{n}{n-k}$
True \square
True for some n and k \square False \square a rational \square a power set of rationals \square
If $f: \mathbb{N} \rightarrow \mathbb{P}(\mathbb{Q})$ then $f(3)$ is a set of rationals \square undefined \square

CS 173, Fall 2015 Examlet 12, Part B

NETID:

FIRST:
LAST:

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1\end{array}$
Graph G with set of nodes V is shown below. Recall that $\operatorname{deg}(n)$ is the degree of node n. Let's define $f: \mathbb{N} \rightarrow \mathbb{P}(V)$ by $f(k)=\{n \in V: \operatorname{deg}(n)=k\}$. Also let $T=\{f(k) \mid k \in \mathbb{N}\}$.
(6 points) Fill in the following values:

(7 points) Is T a partition of V ? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition.
(2 points) State the definition of $\binom{n}{k}$, i.e. express $\binom{n}{k}$ in terms of more basic arithmetic operations.

CS 173, Fall 2015 Examlet 12, Part B

NETID:
FIRST:
Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1\end{array}$
Graph G is shown below with set of nodes V is shown below.

Suppose that $\operatorname{deg}(\mathrm{n})$ is the degree of node n . Now let's define a function $f: V \rightarrow \mathbb{P}(V)$ by $f(p)=\{n \in V: \operatorname{deg}(n)=\operatorname{deg}(p)\}$. Then let $P=\{f(p) \mid p \in V\}$.
(6 points) Fill in the following values:
$f(A)=$
$\mathrm{f}(\mathrm{C})=$
$\mathrm{P}=$
(7 points) Is P a partition of V ? For each of the conditions required to be a partition, briefly explain why P does or doesn't satisfy that condition.
(2 points) Check the (single) box that best characterizes each item.
$|\mathbb{P}(\mathbb{P}(\emptyset))|$
0

$1 \square$
2

$3 \square$
4 \square undefined \square

CS 173, Fall 2015 Examlet 12, Part B

NETID:

FIRST:
LAST:

Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(9 points) Suppose that A is a set and P is a collection of subsets of A. Using precise language and/or notation, state the conditions P must satisfy to be a partition of A.
(6 points) Check the (single) box that best characterizes each item.

$\mathbb{P}(A) \cap \mathbb{P}(B)=\mathbb{P}(A \cap B) \quad$ true for all sets $\quad \square \quad$ true for some sets $\quad \square$
false for all sets $\quad \square$

Set B is a partition of a finite

$$
\leq 2^{|A|} \quad \square
$$

$$
\leq|A| \quad \square
$$ set A. Then $|B|$

$$
=2^{|A|} \quad \square \quad \leq|A+1| \quad \square
$$

CS 173, Fall 2015

 Examlet 12, Part BNETID:

FIRST:
Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{P}\left(\mathbb{R}^{2}\right)$ be defined by $f(x, y)=\left\{(p, q) \in \mathbb{R}^{2} \mid \exists \alpha \in \mathbb{R},(p, q)=\alpha(x, y)\right\}$.
Let $T=\left\{f(x, y) \mid(x, y) \in \mathbb{R}^{2}\right\}$.
(6 points) Answer the following questions:
$f(0,0)=$

Describe (at a high level) the elements of $f(0,36)$:

Give an element of $\mathbb{P}\left(\mathbb{R}^{2}\right)-T$:
(7 points) Is T a partition of \mathbb{R}^{2} ? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition.
(2 points) Check the (single) box that best characterizes each item.
[Buggy question: answer depends on whether you assumed A could be empty.] Let A be a set, $\{A\}$ is a partition of A. \square
 never \square

CS 173, Fall 2015 Examlet 12, Part B

NETID:
FIRST:

LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
Graph G is at right.
V is the set of nodes in G.
$M=\{0,1,2,3\}$

Define $f: M \rightarrow \mathbb{P}(V)$ by $f(n)=\{p \in V: d(p, B)<n\}$, where $d(a, b)$ is the (shortest-path) distance between a and b. Let $P=\{f(n) \mid n \in M\}$.
(6 points) Fill in the following values:
$f(0)=$
$f(1)=$
$P=$
(7 points) Is P a partition of V ? For each of the conditions required to be a partition, briefly explain why P does or doesn't satisfy that condition.
(2 points) Check the (single) box that best characterizes each item.
$\binom{0}{0}-1 \quad \begin{aligned} & \square\end{aligned} 0 \quad \begin{aligned} & \square\end{aligned} 1 \begin{aligned} & \square\end{aligned} 2 \begin{aligned} & \square\end{aligned}$ undefined $\begin{aligned} & \square\end{aligned}$

