
1

CS 173, Fall 2015

Examlet 11, Part B
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(6 points) Your partner has implemented the function Merge(A,B), which merges two sorted linked
lists of integers. Using Merge, fill in the missing parts of this implementation of Mergesort.

Mergesort(L = (a1, a2, . . . , an)) \\ input is a linked list L containing n integers

Solution: if (n=1) return L

p = floor(n/2)

Solution:

La = (a1, . . . , ap)

Lb = (ap+1, . . . , an)

return Merge(Mergesort(La), Mergesort(Lb))

(9 points) Check the (single) box that best characterizes each item.

T (1) = d
T (n) = 4T (n/2) + n

Θ(n) Θ(n logn) Θ(n2)
√

Θ(nlog3 2) Θ(nlog2 3) Θ(2n)

The Towers of Hanoi puzzle can
be solved in polynomial time. proven true proven false

√
not known

Merging two sorted lists

Θ(logn) Θ(n)
√

Θ(n logn) Θ(n2)



2

CS 173, Fall 2015

Examlet 11, Part B
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Check the (single) box that best characterizes each item.

T (1) = d
T (n) = 2T (n− 1) + c

Θ(n) Θ(n2) Θ(n logn) Θ(2n)
√

Circuit satisfiability can be
solved in polynomial time. proven true proven false not known

√

The running time of the
Towers of Hanoi solver Θ(log n) Θ(n log n) Θ(n2) Θ(2n)

√

T (1) = d
T (n) = T (n− 1) + c

Θ(n)
√

Θ(n2) Θ(n logn) Θ(2n)

The running time of Karatsuba’s algorithm
is recursively defined by T (1) = d and
T (n) =

2T (n/2) + cn 3T (n/2) + cn
√

4T (n/2) + cn 4T (n/2) + c



3

CS 173, Fall 2015

Examlet 11, Part B
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Check the (single) box that best characterizes each item.

Karatsuba’s integer
multiplication algorithm

Θ(n2) Θ(n3) Θ(n logn)

Θ(nlog23)
√

Θ(nlog32) Θ(2n)

The running time of binary search is recur-
sively defined by T (1) = d and T (n) =

T (n/2) + c
√

T (n/2) + cn

2T (n/2) + c 2T (n/2) + cn

If a yes/no problem is in NP, a “yes” answer
always has a succinct justification. true

√
false not known

Algorithm A takes n5 time. On one
input, A takes x time. How long will
it take if I double the input size?

2x 5x 32x
√

x5

Problems in class P (as in P vs. NP)
require exponential time

never
√

sometimes

always not known



4

CS 173, Fall 2015

Examlet 11, Part B
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Check the (single) box that best characterizes each item.

The running time of the Towers of Hanoi
solver is recursively defined by T (1) = d
and T (n) =

2T (n− 1) + c
√

2T (n− 1) + cn

2T (n/2) + c 2T (n/2) + cn

If a yes/no problem is in co-NP, a “no” answer
always has a succinct justification. true

√
false not known

The running time of the
Towers of Hanoi solver Θ(log n) Θ(n log n) Θ(n2) Θ(2n)

√

Algorithm A takes 2n time. On one
input, A takes x time. How long will
it take if I double the input size?

2x 2x x2
√

Finding the chromatic number of a graph
with n nodes requires Θ(2n) time.

proven true proven false

not known
√



5

CS 173, Fall 2015

Examlet 11, Part B
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(6 points) Fill in the missing bits of this recursive algorithm for returning the location of a number
k in a sorted list of numbers ap, a2, ..., aq.

search(p,q,k) \\ assume p ≤ q

m := ⌊(p+ q)/2⌋
if k = am then return m

else if (k < am) and p < m then

Solution: search(p,m-1,k)

else if (k > am) and q > m then

Solution: search(m+1,q,k)

else return -1 \\ i.e. error, not found

(9 points) Check the (single) box that best characterizes each item.

It takes exponential time to determine whether
a propositional logic expression can be made
true by picking the right true/false values for
its propositional variables (e.g. p, q, r).

proven true proven false

not known
√

The running time of mergesort is O(n3).
True

√
False

nlog23 grows
faster than n2 slower than n2

√
at the same rate as n2



6

CS 173, Fall 2015

Examlet 11, Part B
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(6 points) Fill in the missing bits of the recursive algorithm for solving the Towers of Hanoi puzzle.

hanoi(A,B,C: pegs, d1, d2 . . . dn: disks) \\ move n disks from peg A to peg B

if (n = 1) move d1 from A to B

else

Solution:

hanoi(A,C,B: pegs, d1, d2 . . . dn−1: disks) \\ move smaller disks to C

move dn from A to B

Solution:

hanoi(C,B,A: pegs, d1, d2 . . . dn−1: disks) \\ move smaller disks to B

(9 points) Check the (single) box that best characterizes each item.

Determining whether a graph
with n edges is connected. polynomial

√
exponential in NP

The running time of mergesort is recur-
sively defined by T (1) = d and T (n) =

2T (n− 1) + c 2T (n− 1) + cn

2T (n/2) + c 2T (n/2) + cn
√

The running time of
binary search

Θ(log n)
√

Θ(n) Θ(n logn) Θ(n2)


