CS 173, Fall 2015 Examlet 11, Part B

NETID:

FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(6 points) Your partner has implemented the function Merge(A,B), which merges two sorted linked lists of integers. Using Merge, fill in the missing parts of this implementation of Mergesort.
$\operatorname{Mergesort}\left(L=\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right) \quad \backslash \backslash$ input is a linked list L containing n integers

Solution: if $(\mathrm{n}=1)$ return L
$\mathrm{p}=$ floor $(\mathrm{n} / 2)$

Solution:

$L_{a}=\left(a_{1}, \ldots, a_{p}\right)$
$L_{b}=\left(a_{p+1}, \ldots, a_{n}\right)$
return $\operatorname{Merge}\left(\operatorname{Mergesort}\left(L_{a}\right)\right.$, $\left.\operatorname{Mergesort}\left(L_{b}\right)\right)$
(9 points) Check the (single) box that best characterizes each item.

$$
\begin{aligned}
& T(1)=d \\
& T(n)=4 T(n / 2)+n
\end{aligned}
$$

$$
\begin{array}{llll}
\Theta(n) & \square & \Theta(n \log n) & \square
\end{array} \Theta\left(n^{2}\right) \boxed{\sqrt{~}}
$$

The Towers of Hanoi puzzle can be solved in polynomial time.

Merging two sorted lists

$$
\Theta(\log n) \quad \Theta(n) \quad \sqrt{ }
$$

$$
\Theta(n \log n) \quad \Theta\left(n^{2}\right) \quad \square
$$

CS 173, Fall 2015 Examlet 11, Part B

NETID:

FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(15 points) Check the (single) box that best characterizes each item.

Circuit satisfiability can be solved in polynomial time.
proven true $\quad \square$ proven false \square not known $\quad \checkmark$

The running time of the Towers of Hanoi solver $\Theta(\log n) \quad \square \quad \Theta(n \log n) \quad \square$
$\Theta\left(n^{2}\right) \quad \square$ $\Theta\left(2^{n}\right) \quad \sqrt{ }$
$T(1)=d$
$T(n)=T(n-1)+c$
$\Theta(n) \quad \boxed{ } \quad \Theta\left(n^{2}\right) \quad \square$
$\Theta(n \log n)$ \square $\Theta\left(2^{n}\right)$ \square

The running time of Karatsuba's algorithm is recursively defined by $T(1)=d$ and $T(n)=$

$$
\begin{array}{lll}
2 T(n / 2)+c n & \square & 3 T(n / 2)+c n \\
4 T(n / 2)+c n & \square & 4 T(n / 2)+c \\
\hline
\end{array}
$$

CS 173, Fall 2015 Examlet 11, Part B

NETID:

FIRST:
Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1\end{array} 2$
(15 points) Check the (single) box that best characterizes each item.

$$
\Theta\left(n^{2}\right) \quad \square \quad \Theta\left(n^{3}\right) \quad \square \quad \Theta(n \log n) \quad \square
$$

Karatsuba's integer
multiplication algorithm
$\Theta\left(n^{\log _{2} 3}\right) \quad \sqrt{ }$
$\Theta\left(n^{\log _{3} 2}\right)$

$\Theta\left(2^{n}\right)$ \square

The running time of binary search is recur-

$$
T(n / 2)+c \quad \begin{array}{|}
& T(n / 2)+c n \quad \square \\
\hline
\end{array}
$$ sively defined by $T(1)=d$ and $T(n)=$

$$
2 T(n / 2)+c \quad \square
$$

$$
2 T(n / 2)+c n \quad \square
$$

If a yes/no problem is in NP, a "yes" answer always has a succinct justification.
true

false \square not known \square

Algorithm A takes n^{5} time. On one input, A takes x time. How long will it take if I double the input size?

Problems in class P (as in P vs. NP) require exponential time

$32 x \quad \sqrt{ }$
$x^{5} \quad \square$ always \square not known \square

CS 173, Fall 2015 Examlet 11, Part B

NETID:

FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(15 points) Check the (single) box that best characterizes each item.

The running time of the Towers of Hanoi solver is recursively defined by $T(1)=d$ and $T(n)=$

$$
\begin{array}{rlll}
2 T(n-1)+c & \boxed{\sqrt{n}} & 2 T(n-1)+c n & \square \\
2 T(n / 2)+c & \square & 2 T(n / 2)+c n & \square
\end{array}
$$

If a yes/no problem is in co-NP, a "no" answer always has a succinct justification.
true $\quad \sqrt{ }$ false \square not known \square

The running time of the Towers of Hanoi solver
$\Theta(\log n) \quad \Theta(n \log n) \quad \square \Theta\left(n^{2}\right) \quad \square \Theta\left(2^{n}\right) \quad \square \sqrt{ }$

Algorithm A takes 2^{n} time. On one input, A takes x time. How long will it take if I double the input size?
$2 x \square 2^{x} \square \quad x^{2} \square \sqrt{ }$

Finding the chromatic number of a graph
proven true $\quad \square$ proven false \square with n nodes requires $\Theta\left(2^{n}\right)$ time. not known

CS 173, Fall 2015 Examlet 11, Part B

NETID:

FIRST:
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(6 points) Fill in the missing bits of this recursive algorithm for returning the location of a number k in a sorted list of numbers $a_{p}, a_{2}, \ldots, a_{q}$.

```
\(\operatorname{search}(\mathrm{p}, \mathrm{q}, \mathrm{k}) \quad \backslash \backslash\) assume \(p \leq q\)
```

$m:=\lfloor(p+q) / 2\rfloor$
if $k=a_{m}$ then return m
else if $\left(k<a_{m}\right)$ and $p<m$ then
Solution: search(p,m-1,k)
else if $\left(k>a_{m}\right)$ and $q>m$ then
Solution: $\operatorname{search}(m+1, q, k)$
else return - 1 \} i.e. error, not found
(9 points) Check the (single) box that best characterizes each item.

It takes exponential time to determine whether a propositional logic expression can be made true by picking the right true/false values for its propositional variables (e.g. p, q, r).
 not known

The running time of mergesort is $O\left(n^{3}\right)$.
True $\quad \sqrt{ }$ False \square
$n^{\log _{2} 3}$ grows faster than $n^{2} \quad \square \quad$ slower than $n^{2} \quad \sqrt{ } \quad$ at the same rate as $n^{2} \quad \square$

CS 173, Fall 2015 Examlet 11, Part B

NETID:

FIRST:
Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(6 points) Fill in the missing bits of the recursive algorithm for solving the Towers of Hanoi puzzle.
hanoi $\left(A, B, C\right.$: pegs, $d_{1}, d_{2} \ldots d_{n}$: disks $) \quad \backslash \backslash$ move n disks from peg A to peg B
if $(n=1)$ move d_{1} from A to B
else

Solution:

hanoi $\left(A, C, B\right.$: pegs, $d_{1}, d_{2} \ldots d_{n-1}$: disks $) \quad \backslash \backslash$ move smaller disks to C
move d_{n} from A to B

Solution:

hanoi $\left(C, B, A\right.$: pegs, $d_{1}, d_{2} \ldots d_{n-1}$: disks) $\backslash \backslash$ move smaller disks to B
(9 points) Check the (single) box that best characterizes each item.

Determining whether a graph with n edges is connected.
polynomial
 exponential \square in NP \square

The running time of mergesort is recursively defined by $T(1)=d$ and $T(n)=$

$$
\begin{array}{rrr}
2 T(n-1)+c & \square & 2 T(n-1)+c n \\
2 T(n / 2)+c & \square & 2 T(n / 2)+c n \\
\hline
\end{array}
$$

The running time of binary search

$$
\Theta(\log n) \quad \sqrt{ }
$$

$$
\Theta(n) \quad \square
$$

$$
\Theta\left(n^{2}\right) \quad \square
$$

