CS 173, Fall 2015 Examlet 11, Part B

NETID:

FIRST:
Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1\end{array} 2$
(6 points) Your partner has implemented the function Merge(A,B), which merges two sorted linked lists of integers. Using Merge, fill in the missing parts of this implementation of Mergesort.
$\operatorname{Mergesort}\left(L=\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right) \quad \backslash \backslash$ input is a linked list L containing n integers

$$
\mathrm{p}=\text { floor }(\mathrm{n} / 2)
$$

(9 points) Check the (single) box that best characterizes each item.

$$
T(1)=d
$$

$$
\Theta(n) \quad \square \quad \Theta(n \log n) \quad \Theta\left(n^{2}\right) \quad \square
$$

$T(n)=4 T(n / 2)+n$

$$
\Theta\left(n^{\log _{3} 2}\right) \quad \square \quad \Theta\left(n^{\log _{2} 3}\right) \quad \square \quad \Theta\left(2^{n}\right) \quad \square
$$

The Towers of Hanoi puzzle can be solved in polynomial time.
proven true \square proven false $\quad \square$ not known \square

Merging two sorted lists

$$
\Theta(\log n) \quad \Theta(n) \quad \square
$$

$$
\Theta(n \log n) \quad \Theta\left(n^{2}\right) \quad \square
$$

CS 173, Fall 2015

 Examlet 11, Part B
NETID:

FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(15 points) Check the (single) box that best characterizes each item.
$T(1)=d$
$T(n)=2 T(n-1)+c$
$\Theta(n) \quad \Theta\left(n^{2}\right) \quad \square$
$\Theta(n \log n) \quad \Theta\left(2^{n}\right)$

Circuit satisfiability can be solved in polynomial time.
proven true $\quad \square$ proven false $\quad \square$ not known \square

The running time of the Towers of Hanoi solver $\Theta(\log n) \quad \square \Theta(n \log n) \quad \square \quad \Theta\left(n^{2}\right) \quad \square \Theta\left(2^{n}\right) \quad \square$
$T(1)=d$
$T(n)=T(n-1)+c$
$\Theta(n) \quad \Theta\left(n^{2}\right) \quad \square$
$\Theta(n \log n)$ \square $\Theta\left(2^{n}\right)$ \square

The running time of Karatsuba's algorithm is recursively defined by $T(1)=d$ and $T(n)=$

$$
\begin{array}{llll}
2 T(n / 2)+c n & \square & 3 T(n / 2)+c n & \square \\
4 T(n / 2)+c n & \square & 4 T(n / 2)+c & \square
\end{array}
$$

CS 173, Fall 2015 Examlet 11, Part B

NETID:

FIRST:
Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1\end{array}$
(15 points) Check the (single) box that best characterizes each item.

$\Theta\left(n^{2}\right)$	\square	$\Theta\left(n^{3}\right)$	\square	$\Theta(n \log n)$
$\Theta\left(n^{\log _{2} 3}\right)$	\square	$\Theta\left(n^{\log _{3} 2}\right)$	\square	$\Theta\left(2^{n}\right)$

The running time of binary search is recur-

$T(n / 2)+c$	\square	$T(n / 2)+c n$
$2 T(n / 2)+c$	\square	
$2 T(n / 2)+c n$	\square	

If a yes/no problem is in NP, a "yes" answer always has a succinct justification.
true \square false \square not known \square

Algorithm A takes n^{5} time. On one input, A takes x time. How long will it take if I double the input size?

Problems in class P (as in P vs. NP) require exponential time
never $\square \quad$ sometimes \square always \square not known \square

CS 173, Fall 2015 Examlet 11, Part B

NETID:

FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(15 points) Check the (single) box that best characterizes each item.

The running time of the Towers of Hanoi solver is recursively defined by $T(1)=d$ and $T(n)=$

$$
\begin{array}{rlll}
2 T(n-1)+c & \square & 2 T(n-1)+c n & \square \\
2 T(n / 2)+c & \square & 2 T(n / 2)+c n & \square
\end{array}
$$

If a yes/no problem is in co-NP, a "no" answer always has a succinct justification. true
 not known \square

The running time of the Towers of Hanoi solver

$$
\begin{array}{lll}
\Theta(\log n) & \square & \Theta(n \log n) \\
& \\
\text { n one } \\
\text { g will } \\
\text { e? } & 2 x & \square
\end{array} 2^{x} \boxed{\square} \quad x^{2} \quad \square
$$ it take if I double the input size?

Finding the chromatic number of a graph with n nodes requires $\Theta\left(2^{n}\right)$ time.

Algorithm A takes 2^{n} time. On one input, A takes x time. How long will

CS 173, Fall 2015 Examlet 11, Part B

NETID:

FIRST:
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(6 points) Fill in the missing bits of this recursive algorithm for returning the location of a number k in a sorted list of numbers $a_{p}, a_{2}, \ldots, a_{q}$.

$$
\operatorname{search}(\mathrm{p}, \mathrm{q}, \mathrm{k}) \quad \backslash \backslash \quad \text { assume } p \leq q
$$

$m:=\lfloor(p+q) / 2\rfloor$
if $k=a_{m}$ then return m
else if $\left(k<a_{m}\right)$ and $p<m$ then
\square
else if $\left(k>a_{m}\right)$ and $q>m$ then
\square
else return-1
i.e. error, not found
(9 points) Check the (single) box that best characterizes each item.

It takes exponential time to determine whether a propositional logic expression can be made true by picking the right true/false values for its propositional variables (e.g. p, q, r).

The running time of mergesort is $O\left(n^{3}\right)$.

$n^{\log _{2} 3}$ grows

$$
\text { faster than } n^{2} \quad \square
$$

$$
\text { slower than } n^{2}
$$

\square
\square

CS 173, Fall 2015 Examlet 11, Part B

NETID:

FIRST:
Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(6 points) Fill in the missing bits of the recursive algorithm for solving the Towers of Hanoi puzzle.
hanoi $\left(A, B, C\right.$: pegs, $d_{1}, d_{2} \ldots d_{n}$: disks) $\backslash \backslash$ move n disks from peg A to peg B
if $(n=1)$ move d_{1} from A to B
else

move d_{n} from A to B
(9 points) Check the (single) box that best characterizes each item.

Determining whether a graph with n edges is connected.
polynomial \square
exponential \square
in NP \square

The running time of mergesort is recursively defined by $T(1)=d$ and $T(n)=$

$$
\begin{array}{rrr}
2 T(n-1)+c & \square & 2 T(n-1)+c n \\
2 T(n / 2)+c & \square & 2 T(n / 2)+c n \\
\hline
\end{array}
$$

The running time of binary search

$$
\Theta(\log n) \quad \square
$$

$\Theta(n) \square$
$\Theta(n \log n) \quad \square$
$\Theta\left(n^{2}\right) \quad \square$

