CS 173, Fa Examlet 1		NI	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

(6 points) Your partner has implemented the function Merge(A,B), which merges two sorted linked lists of integers. Using Merge, fill in the missing parts of this implementation of Mergesort.

 $Mergesort(L = (a_1, a_2, \dots, a_n)) \setminus input is a linked list L containing n integers$

p = floor(n/2)

(9 points) Check the (single) box that best characterizes each item.

T(1) = d	$\Theta(n)$		$\Theta(n\log n)$		$\Theta(n^2)$	
T(n) = 4T(n/2) + n	$\Theta(n^{\log_3 2})$		$\Theta(n^{\log_2 3})$		$\Theta(2^n)$	
The Towers of Hanoi puzzle can be solved in polynomial time. proven the	rue	proven	false	not k	known	
Merging two sorted lists	$\Theta(\log n)$		$\Theta(n)$			
	$\Theta(n\log n)$)	$\Theta(n^2)$			

CS 173, Fa Examlet 1		NI	ETI	D:								
FIRST:					L	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

(15 points) Check the (single) box that best characterizes each item.

CS 173, Fa Examlet 1		NI	ETI	D:								
FIRST:					\mathbf{L}	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

(15 points) Check the (single) box that best characterizes each item.

Karatsuba's integer multiplication algorithm	$\Theta(n^2)$ $\Theta(n^{\log_2 3})$		$\Theta(n^3)$ $\Theta(n^{\log_3 2})$		$\Theta(n \log n)$ $\Theta(2^n)$		
The running time of binary sets sively defined by $T(1) = d$ and		r-	(n/2) + c $(n/2) + c$		T(n/2) + 2T(n/2) +		
If a yes/no problem is in NP, always has a succinct justifica	-		true	false		not known	
Algorithm A takes n^5 time. input, A takes x time. How lo it take if I double the input s	ong will	2x	5x] 32 <i>x</i>	;	x^5	
Problems in class P (as in P require exponential time	vs. NP)		ever	somet not kr]	

CS 173, Fa Examlet 1		NE	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

(15 points) Check the (single) box that best characterizes each item.

The running time of the Towers of Hanoi solver is recursively defined by $T(1) = d$ and $T(n) = 2T(n/2) + c$ $2T(n/2) + cn$
If a yes/no problem is in co-NP, a "no" answer always has a succinct justification. true false not known
The running time of the Towers of Hanoi solver $\Theta(\log n)$ $\Theta(n \log n)$ $\Theta(n^2)$ $\Theta(2^n)$
Algorithm A takes 2^n time. On one input, A takes x time. How long will it take if I double the input size? $2x$ 2^x x^2
Finding the chromatic number of a graph proven true proven false with n nodes requires $\Theta(2^n)$ time.

CS 173, Fa Examlet 1		NI	ETI	D:]			
FIRST:					L	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

(6 points) Fill in the missing bits of this recursive algorithm for returning the location of a number k in a sorted list of numbers $a_p, a_2, ..., a_q$.

search(p,q,k) \setminus assume $p \le q$ $m := \lfloor (p+q)/2 \rfloor$ if $k = a_m$ then return m else if $(k < a_m)$ and p < m then

else if $(k > a_m)$ and q > m then

else return -1 $\$ i.e. error, not found

(9 points) Check the (single) box that best characterizes each item.

It takes exponential time to a propositional logic expre- true by picking the right its propositional variables (ession can be made true/false values for	proven true	proven false]
The running time of merges	sort is $O(n^3)$. True	e False		
$n^{\log_2 3}$ grows faster that	$n n^2$ slower	than n^2	at the same rate as n^2	2

CS 173, Fa Examlet 1		NE	ETI	D:]			
FIRST:					L	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

(6 points) Fill in the missing bits of the recursive algorithm for solving the Towers of Hanoi puzzle.

hanoi(A, B, C: pegs, $d_1, d_2 \dots d_n$: disks) \setminus move n disks from peg A to peg B

if (n = 1) move d_1 from A to B

else

move d_n from A to B

(9 points) Check the (single) box that best characterizes each item.

Determining whether a graph with n edges is connected.	h polynomi	ial	exponential		in NP
The running time of merges sively defined by $T(1) = d$ and		2T(n-1) $2T(n/2)$		2T(n-1) $2T(n/2)$	1) + cn $2) + cn$
The running time of binary search $\Theta(\log$	g(n)	$\Theta(n)$	$\Theta(n\log n)$		$\Theta(n^2)$