CS 173, Fall 2015 Examlet 11, Part A

NETID:

FIRST:
Discussion: $\begin{array}{llllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
$01 \operatorname{Chop}\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n}\right) \backslash$ input is 2 lists of n integers, n is a power of 2
02 if $(n=1)$
03 return $a_{1} b_{1}$
04 else
$05 \quad \mathrm{p}=\frac{n}{2}$
$06 \quad \mathrm{rv}=\operatorname{Chop}\left(a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{p}\right)$
$07 \quad \mathrm{rv}=\mathrm{rv}+\operatorname{Chop}\left(a_{1}, \ldots, a_{p}, b_{p+1}, \ldots, b_{n}\right)$
$08 \quad \mathrm{rv}=\mathrm{rv}+\operatorname{Chop}\left(a_{p+1}, \ldots, a_{n}, b_{p+1}, \ldots, b_{n}\right)$
$09 \quad \mathrm{rv}=\mathrm{rv}+\operatorname{Chop}\left(a_{p+1}, \ldots, a_{n}, b_{1}, \ldots, b_{p}\right)$
10
return rv

1. (5 points) Suppose that $T(n)$ is the running time of Chop on an input array of length n. Give a recursive definition of $T(n)$. Assume that dividing the list in half takes $O(n)$ time.

Solution:

$T(1)=c$
$T(n)=4 T(n / 2)+d n+f$
2. (4 points) What is the height of the recursion tree for $T(n)$, assuming n is a power of 2 ?

Solution: $\log _{2} n$
3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: There are 4^{k} nodes, each containing $f+d n / 2^{k}$. So the total work is $4^{k} f+2^{k} d n$
4. (3 points) How many leaves are in the recursion tree for $T(n)$? (Simplify your answer.)

Solution: $4^{\log _{2} n}=4^{\log _{4} n \log 24}=n^{\log 24}=n^{2}$

CS 173, Fall 2015 Examlet 11, Part A

NETID:

FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

01 Crunch(k,n)
inputs are positive integers
02 if $(n=1)$ return k
03 else if $(n=2)$ return k^{2}
04 else
$05 \quad$ half $=\lfloor n / 2\rfloor$
$06 \quad$ answer $=\operatorname{Crunch}(\mathrm{k}$, half $)$
$07 \quad$ answer $=$ answer*answer
$08 \quad$ if (n is odd)
09
10
answer $=$ answer* ${ }^{*}$
return answer

1. (5 points) Suppose $T(n)$ is the running time of Crunch. Give a recursive definition of $T(n)$.

Solution: $T(1)=c, T(2)=d$
$T(n)=T(n / 2)+f$
2. (4 points) What is the height of the recursion tree for $T(n)$? (Assume that n is a power of 2.)

Solution: $\log _{2} n-1$
3. (3 points) How many leaves are in the recursion tree for $T(n)$?

Solution: One.
4. (3 points) What is the big-Theta running time of Crunch?

Solution: $\Theta(\log n)$

CS 173, Fall 2015 Examlet 11, Part A

FIRST:

01 Process $\left(a_{1}, \ldots, a_{n}\right.$: array of integers)
02 if $(n=1)$
03 if $\left(a_{1}>8\right)$ return true
04 else return false
05 else if $\left(\operatorname{Process}\left(a_{1}, \ldots, a_{n-1}\right)\right.$ is true and $\operatorname{Process}\left(a_{2}, \ldots, a_{n}\right)$ is true)
05 return true
06 else return false

1. (3 points) If Process returns true, what must be true of the values in the input array?

Solution: The values in the input array must all be greater than 8 .
2. (5 points) Give a recursive definition for $T(n)$, the running time of Process on an input of length n, assuming it takes constant time to set up the recursive calls in line 05.

Solution:

$T(1)=c$
$T(n)=2 T(n-1)+d$
3. (3 points) What is the height of the recursion tree for $T(n)$?

Solution: n
4. (4 points) What is the big-theta running time of Process?

Solution: $\Theta\left(2^{n}\right)$

CS 173, Fall 2015 Examlet 11, Part A

FIRST:
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

01 Twiddle $\left.\left(a_{0}, \ldots, a_{n-1}\right)\right) \backslash$ input is an array of n integers
02
03
04
$05 \quad \mathrm{p}=\left\lfloor\frac{n}{4}\right\rfloor$
$06 \quad \mathrm{q}=\left\lfloor\frac{n}{2}\right\rfloor$

10

$$
\begin{array}{lc}
02 & \text { if }\left(n=2 \text { and } a_{0}>a_{1}\right) \\
03 & \operatorname{swap}\left(a_{0}, a_{1}\right) \quad \backslash \backslash \text { interchange the values at positions } 0 \text { and } 1 \text { in the array } \\
04 & \text { else if }(n>2) \\
05 & \mathrm{p}=\left\lfloor\frac{n}{4}\right\rfloor \\
06 & \mathrm{q}=\left\lfloor\frac{n}{2}\right\rfloor \\
07 & \mathrm{r}=\mathrm{p}+\mathrm{q} \\
08 & \text { Twiddle }\left(a_{0}, \ldots, a_{q}\right) \quad \backslash \backslash \text { constant time to make smaller array } \\
09 & \text { Twiddle }\left(a_{q+1}, \ldots, a_{n-1}\right) \backslash \text { constant time to make smaller array } \\
10 & \text { Twiddle }\left(a_{p}, \ldots, a_{r}\right) \quad \backslash \backslash \text { constant time to make smaller array }
\end{array}
$$

1. (5 points) Suppose that $T(n)$ is the running time of Twiddle on an input array of length n. Give a recursive definition of $T(n)$.

Solution:

$T(1)=c, T(2)=d$
$T(n)=3 T(n / 2)+f$
2. (4 points) What is the height of the recursion tree for $T(n)$, assuming n is a power of 2 ?

Solution: $\log _{2} n-1$
3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: $f \cdot 3^{k}$
4. (3 points) How many leaves are in the recursion tree for $T(n)$? (Simplify your answer.)

Solution: $\quad 3^{\log _{2} n-1}=1 / 3\left(3^{\log _{2} n}\right)=1 / 3\left(3^{\log _{3} n \log _{2} 3}\right)=1 / 3 \cdot n^{\log _{2} 3}$

CS 173, Fall 2015 Examlet 11, Part A

NETID:

FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
$01 \operatorname{MyFunc}\left(a_{1}, \ldots, a_{n}\right) \backslash \backslash$ input is an array of n integers
02 for $i:=1$ to $n-1$
$03 \quad \min :=i$
$04 \quad$ for $j:=i$ to n
if $a_{j}<a_{\text {min }}$ then min $:=j$
$\operatorname{swap}\left(a_{i}, a_{\text {min }}\right) \quad \backslash \backslash$ interchange the values at positions i and \min in the array

1. (4 points) If the input is $10,5,2,3,8$, what are the array values after two iterations of the outer loop?
Solution: After the second iteration, it contains 2, 3, 10, 5, 8 .
2. (4 points) Let $T(n)$ be the number of times that line 5 is executed. Express $T(n)$ using summation notation, directly following the structure of the code.
Solution: The i th time through the outer loop, the inner loop runs $n-i+1$ times. So the total number of times that line 5 executes is:
$\sum_{i=1}^{n-1}(n-i+1)$
3. (4 points) Find an (exact) closed form for $T(n)$. Show your work.

Solution: If we break apart the sum and then substitute in a new index variable $p=n-i$ we get:
$\sum_{i=1}^{n-1}(n-i+1)=(n-1)+\sum_{i=1}^{n-1}(n-i)=(n-1)+\sum_{p=1}^{n-1} p=(n-1)+\frac{n(n-1)}{2}$
Simplifying, we get
$(n-1)+\frac{n(n-1)}{2}=n-1+\frac{1}{2} n^{2}-\frac{1}{2} n=\frac{1}{2} n^{2}+\frac{1}{2} n+1$
4. (3 points) What is the big-theta running time of MyFunc?

Solution: $\Theta\left(n^{2}\right)$

CS 173, Fall 2015 Examlet 11, Part A

NETID:

FIRST:

Discussion: \quad Thursday $22 \begin{array}{lllllllllll} & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
$00 \operatorname{Kitty}\left(a_{1}, \ldots, a_{n}\right):$ list of n positive integers, $n \geq 2$)
01 if $(n=2)$ return $\left|a_{1}-a_{2}\right|$
02 else
$03 \quad$ bestval $=0$
04 for $k=1$ to n
$05 \quad$ newval $=\operatorname{Kitty}\left(a_{1}, a_{2}, \ldots, a_{k-1}, a_{k+1}, \ldots a_{n}\right) \quad \backslash \backslash$ constant time to remove a_{k}
$06 \quad$ if (newval $>$ bestval $)$ bestval $=$ newval
07 return bestval

1. (3 points) Describe (in English) what Kitty computes.

Solution: Kitty computes the largest Kitty difference between two values in the list. Or, equivalently, the largest value minus the smallest value.
2. (5 points) Suppose that $T(n)$ is the running time of Kitty on an input list of length n. Give a recursive definition of $T(n)$.

Solution:

$T(2)=c$
$T(n)=n T(n-1)+d$
3. (3 points) What is the height of the recursion tree for $T(n)$?

Solution: $n-2$
4. (4 points) How many leaf nodes are there in the recursion tree for $T(n)$?

Solution: $\frac{n!}{2}$

