CS 173, Fa Examlet 1		NI	ETI	D:]			
FIRST:					L	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
01 Chop $(a_1,, a_n)$	$\ldots, a_n; b_1, \ldots, b_n)$	\\ iı	nput	is 2 li	ists o	of n integers,	, n is	a pow	er of 2			
02 if $(n$	(=1)											
03	return a_1b_1											
04 else												
05	$p = \frac{n}{2}$											
06	$\operatorname{rv} = \operatorname{Chop}(a_1, .$	\ldots, a_p	b_{1}, b_{1}, b_{2}	\ldots, b_p	,)							
07	rv = rv + Chop	$o(a_1,, a_n)$, a	p_p, b_{p+1}	$_1, \ldots$	$(, b_n)$						
08	rv = rv + Chop	$o(a_{p+1})$	$_{1}, \ldots$	$, a_n, b$	$p_{p+1},$	$\ldots, b_n)$						
09	rv = rv + Chop	$o(a_{p+1})$	$_1, \ldots$	$, a_n, b$	$p_1,$	$(, b_p)$						
10	return rv											

1. (5 points) Suppose that T(n) is the running time of Chop on an input array of length n. Give a recursive definition of T(n). Assume that dividing the list in half takes O(n) time.

2. (4 points) What is the height of the recursion tree for T(n), assuming n is a power of 2?

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

4. (3 points) How many leaves are in the recursion tree for T(n)? (Simplify your answer.)

CS 173, Fall 2015 Examlet 11, Part A NETID:															
FIRST:						LAST:									
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2			
01 Crunch(k,n) \setminus inputs are	posi	tive i	nteg	ers										
02 if $(n$	= 1) return k														
03 else i	if $(n=2)$ return	k^2													
04 else															
05	$half = \lfloor n/2 \rfloor$														
06	answer $=$ Crune	ch(k,	half)												
07	answer = answer	er*an	swer												
08	if $(n \text{ is odd})$														
09	answer =	answ	ver*k												
10	return answer														

1. (5 points) Suppose T(n) is the running time of Crunch. Give a recursive definition of T(n).

2. (4 points) What is the height of the recursion tree for T(n)? (Assume that n is a power of 2.)

3. (3 points) How many leaves are in the recursion tree for T(n)?

4. (3 points) What is the big-Theta running time of Crunch?

CS 173, Fall 2015 Examlet 11, Part A NETID:												
FIRST:						LAST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
	a_1, \ldots, a_n : array of	integ	gers)									
02 if $(n =$	/											
	$(a_1 > 8)$ return tru	ıe										
04 els	e return false											
05 else if	$(\operatorname{Process}(a_1,\ldots,a_n))$	_{n-1}) i	s tru	e and	l Pro	$cess(a_2,\ldots,$	a_n) is	s true)				
05 ret	turn true											
06 else ret	turn false											

1. (3 points) If Process returns true, what must be true of the values in the input array?

2. (5 points) Give a recursive definition for T(n), the running time of Process on an input of length n, assuming it takes constant time to set up the recursive calls in line 05.

3. (3 points) What is the height of the recursion tree for T(n)?

4. (4 points) What is the big-theta running time of Process?

CS 173, Fa Examlet 1		NF	ETII) :								
FIRST:					L	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
01 Twiddle $(a_0$	$,\ldots,a_{n-1})) \setminus \langle i$	nput	is an	arra	y of	n integers						
02 if $(n$	$= 2 \text{ and } a_0 > a_1$)										
03	$\operatorname{swap}(a_0, a_1) \setminus$	\ inte	erchai	nge tl	he va	alues at posi	tions	0 and	1 in t	he arra	ay	
04 else i	f $(n > 2)$											
05	$\mathbf{p} = \lfloor \frac{n}{4} \rfloor$											
06	$q = \left \frac{\dot{n}}{2}\right $											
07	r = p + q											
08	Twiddle $(a_0,\ldots,$	$a_a)$	$\setminus c$	onsta	nt t	ime to make	sma	ller ar	ray			
09	Twiddle $(a_{q+1}, \ldots, a_{q+1})$	1,							•	y		
10	Twiddle $(a_p, \ldots,$									-		

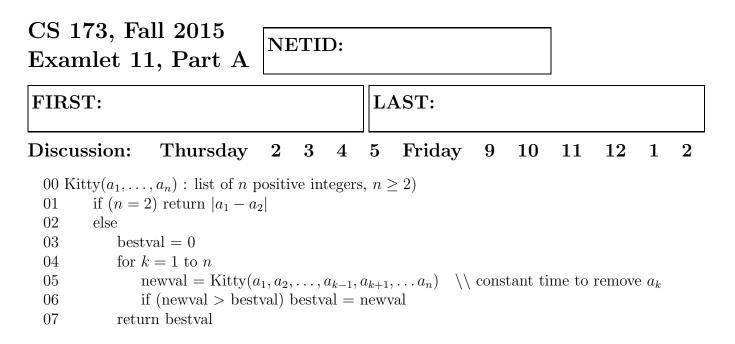
1. (5 points) Suppose that T(n) is the running time of Twiddle on an input array of length n. Give a recursive definition of T(n).

2. (4 points) What is the height of the recursion tree for T(n), assuming n is a power of 2?

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

4. (3 points) How many leaves are in the recursion tree for T(n)? (Simplify your answer.)

CS 173, Fa Examlet 1		NI	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2
01 MyFunc $(a_1, 02)$ for $i :=$, a_n) \\ input 1 to $n-1$	is ar	1 arra	ay of :	n int	egers						


 $\begin{array}{ll} 03 & min := i \\ 04 & \text{for } j := i \text{ to } n \\ 05 & \text{if } a_j < a_{min} \text{ then } min := j \\ 06 & \text{swap}(a_i, a_{min}) \quad \backslash \ \text{interchange the values at positions } i \text{ and } min \text{ in the array} \end{array}$

1. (4 points) If the input is 10, 5, 2, 3, 8, what are the array values after two iterations of the outer loop?

2. (4 points) Let T(n) be the number of times that line 5 is executed. Express T(n) using summation notation, directly following the structure of the code.

3. (4 points) Find an (exact) closed form for T(n). Show your work.

4. (3 points) What is the big-theta running time of MyFunc?

1. (3 points) Describe (in English) what Kitty computes.

2. (5 points) Suppose that T(n) is the running time of Kitty on an input list of length n. Give a recursive definition of T(n).

3. (3 points) What is the height of the recursion tree for T(n)?

4. (4 points) How many leaf nodes are there in the recursion tree for T(n)?