CS 173, Fa Examlet 10		NF	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2.

$$T(4) = 7 \qquad T(n) = 5T\left(\frac{n}{2}\right) + n$$

(a) The height: $\log_2(n) - 2$

(b) The number of leaves (please simplify): $5^{\log_2(n)-2} = \frac{1}{25} 5^{\log_2(n)} = \frac{1}{25} 5^{\log_5 n \log_2 5} = \frac{1}{25} n^{\log_2 5}$

(c) Value in each node at level k: $\frac{n}{2^k}$

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

 $42n! \quad 7^{n} \quad 100 \log n \quad n \log(n^{7}) \quad 2^{3n} \quad \log(2^{n}) \quad (n^{3})^{7}$ $100 \log n \quad \log(2^{n}) \quad n \log(n^{7}) \quad (n^{3})^{7} \quad 7^{n} \quad 2^{3n} \quad 42n!$

CS 173, Fa Examlet 10		NF	ETI	D:								
FIRST:					$\mathbf{L}_{\mathbf{L}}$	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (9 points) Fill in key facts about the recursion tree for T, assuming that T is even.

- T(0) = 5 $T(n) = 3T(n-2) + n^2$
- (a) The height: $\frac{n}{2}$
- (b) The number of leaves (please simplify): $3^{\frac{n}{2}} = (\sqrt{3})^n$
- (c) Value in each node at level k: $(n-2k)^2$

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

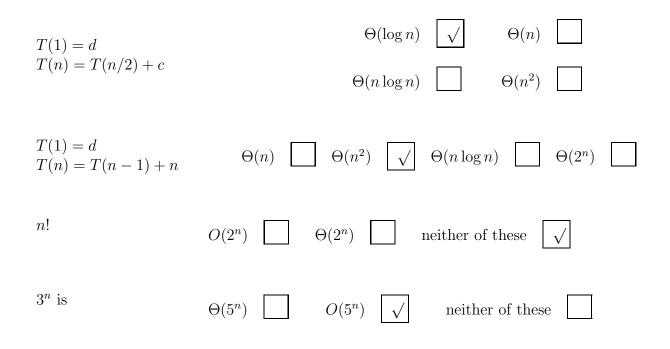
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$(3^n)^2$	10	$0.001n^{3}$	$30\log n$	$n\log(n^7)$	8n! + 18	$3n^2$
-----------	----	--------------	------------	--------------	----------	--------

10	$30\log n$	$n\log(n^7)$	$3n^2$	$0.001n^3$	$(3^n)^2$	8n! + 18

CS 173, Fa Examlet 10		NF	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

- (7 points) Prof. Flitwick claims that for any functions f and g from the reals to the reals, if f(x) ≪ g(x) then log(f(x)) ≪ log(g(x)). Is this true? Briefly justify your answer.
 Solution: This is not true. Consider f(x) = x and g(x) = x². Then log(g(x)) = 2log(f(x)) So it can't be the case that log(f(x)) ≪ log(g(x)).
- 2. (8 points) Check the (single) box that best characterizes each item.



CS 173, Fa Examlet 10		NI	ETI	D:								
FIRST:					$\mathbf{L}_{\mathbf{L}}$	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 7.

T(1) = 5 $T(n) = 3T(\frac{n}{7}) + n^2$

- (a) The height: $\log_7 n$.
- (b) The number of leaves (please simplify): $3^{\log_7 n} = 3^{\log_3 n \log_7 3} = n^{\log_7 3}$
- (c) Value in each node at level k: $(\frac{n}{7^k})^2$

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

 $2^{n} + 3^{n}$ n^{3} $100 \log n$ 3^{31} $3n \log(n^{3})$ 7n! + 2 173n - 173

3^{31}	$100\log n$	173n - 173	$3n\log(n^3)$	n^3	$2^{n} + 3^{n}$	7n! + 2

CS 173, Fa Examlet 10		NI	ETI	D:								
FIRST:					$\mathbf{L}_{\mathbf{L}}$	AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is odd.

$$T(1) = 7$$
 $T(n) = nT(n-2) + n$

- (a) The height: $\frac{n-1}{2}$
- (b) The number of leaves: $n(n-2)(n-4) \dots 5 \cdot 3 \cdot 1$
- (c) Value in each node at level k: n-2k

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

 $3n^2 \qquad \frac{n\log n}{7} \qquad (10^{10^{10}})n \qquad 0.001n^3 \qquad 30\log(n^{17}) \qquad 8n! + 18 \qquad 3^n + 11^n$

$30\log(n^{17})$	$(10^{10^{10}})n$	$\frac{n\log n}{7}$	$3n^2$	$0.001n^3$	$3^n + 11^n$	8n! + 18

CS 173, Fall 2015 Examlet 10, Part B NETID:												
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

1. (7 points) Suppose that f, g, and h are functions from the reals to the reals, such that f is O(g) and g is O(h). Must f be O(h)? Briefly justify your answer.

Solution: This is true. Since f is O(g) and g is O(h), there are positive reals c, k, C and K such that

 $0 \le f(x) \le cg(x)$ and $0 \le g(y) \le Ch(y)$ for every $x \ge k$ and $y \ge K$.

But then if we let p = cC, we have

$$O \le f(x) \le ph(x)$$

for every $x \ge \max(k, K)$.

2. (8 points) Check the (single) box that best characterizes each item.

