CS 173, Fall 2015 Examlet 10, Part B

NETID:

FIRST:
Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2 .

$$
T(4)=7 \quad T(n)=5 T\left(\frac{n}{2}\right)+n
$$

(a) The height:
(b) The number of leaves (please simplify):
(c) Value in each node at level k:

Change of base formula: $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.
$42 n!\quad 7^{n} \quad 100 \log n \quad n \log \left(n^{7}\right) \quad 2^{3 n} \quad \log \left(2^{n}\right) \quad\left(n^{3}\right)^{7}$

CS 173, Fall 2015 Examlet 10, Part B

NETID:

1. (9 points) Fill in key facts about the recursion tree for T, assuming that T is even.

$$
T(0)=5 \quad T(n)=3 T(n-2)+n^{2}
$$

(a) The height:
(b) The number of leaves (please simplify):
(c) Value in each node at level k:

Change of base formula: $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.
$\left(3^{n}\right)^{2} \quad 10 \quad 0.001 n^{3} \quad 30 \log n \quad n \log \left(n^{7}\right) \quad 8 n!+18 \quad 3 n^{2}$

CS 173, Fall 2015 Examlet 10, Part B

NETID:

FIRST:
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (7 points) Prof. Flitwick claims that for any functions f and g from the reals to the reals, if $f(x) \ll g(x)$ then $\log (f(x)) \ll \log (g(x))$. Is this true? Briefly justify your answer.
2. (8 points) Check the (single) box that best characterizes each item.

$$
\begin{aligned}
& T(1)=d \\
& T(n)=T(n / 2)+c \\
& \\
& T(1)=d \\
& T(n)=T(n-1)+n
\end{aligned}
$$

$$
\Theta(\log n) \quad \square
$$

$$
\Theta(n) \quad \square
$$

$$
\Theta(n \log n) \quad \square
$$

$$
\Theta\left(n^{2}\right)
$$

\square

$$
\Theta(n) \quad \square
$$

$$
\Theta\left(n^{2}\right) \quad \square
$$

$$
\Theta(n \log n)
$$

\square $\Theta\left(2^{n}\right)$ \square
n !
$O\left(2^{n}\right) \square$
$\Theta\left(2^{n}\right) \quad \square$
neither of these \square
3^{n} is

$$
\Theta\left(5^{n}\right) \quad O\left(5^{n}\right) \quad \square \quad \text { neither of these } \square
$$

CS 173, Fall 2015 Examlet 10, Part B

NETID:

FIRST:
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 7 .

$$
T(1)=5 \quad T(n)=3 T\left(\frac{n}{7}\right)+n^{2}
$$

(a) The height:
(b) The number of leaves (please simplify):
(c) Value in each node at level k:

Change of base formula: $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.
$2^{n}+3^{n} \quad n^{3} \quad 100 \log n \quad 3^{31} \quad 3 n \log \left(n^{3}\right) \quad 7 n!+2 \quad 173 n-173$

CS 173, Fall 2015 Examlet 10, Part B

NETID:

FIRST:
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is odd.

$$
T(1)=7 \quad T(n)=n T(n-2)+n
$$

(a) The height:
(b) The number of leaves:
(c) Value in each node at level k:

Change of base formula: $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.
$3 n^{2} \quad \frac{n \log n}{7}$
$\left(10^{10^{10}}\right) n$
$0.001 n^{3}$
$30 \log \left(n^{17}\right)$
$8 n!+18$
$3^{n}+11^{n}$

CS 173, Fall 2015 Examlet 10, Part B

NETID:

FIRST:
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (7 points) Suppose that f, g, and h are functions from the reals to the reals, such that f is $O(g)$ and g is $O(h)$. Must f be $O(h)$? Briefly justify your answer.
2. (8 points) Check the (single) box that best characterizes each item.

Dividing a problem of size n into k sub$k<m \quad \square \quad k=m \quad \square$ problems, each of size n / m, has the best big- Θ running time when
$k>m \quad \square \quad k m=1 \quad \square$
$T(1)=c$
$T(n)=3 T(n / 3)+n$
$\Theta(n) \quad \square$
$\Theta\left(n^{2}\right) \quad \square$
$\Theta(n \log n)$ \square $\Theta\left(2^{n}\right)$

Suppose $f(n) \ll g(n)$. Is $g(n) \ll f(n)$?
no \square
perhaps \square
yes

$n^{\log _{2} 3}$ grows
faster than $n^{2} \quad \square$
slower than $n^{2} \quad \square$
at the same rate as n^{2} \square

