\mathbf{CS}	173,	Fall	2015	
Exa	mlet	10.	Part	B

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2.

$$T(4) = 7$$

$$T(n) = 5T\left(\frac{n}{2}\right) + n$$

- (a) The height:
- (b) The number of leaves (please simplify):
- (c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

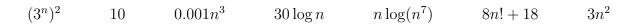
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

42n! 7^n $100 \log n$ $n \log(n^7)$ 2^{3n} $\log(2^n)$ $(n^3)^7$

\mathbf{CS}	173,	Fall	2015	
Exa	mlet	10	Part	P

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2


1. (9 points) Fill in key facts about the recursion tree for T, assuming that T is even.

$$T(0) = 5$$
 $T(n) = 3T(n-2) + n^2$

- (a) The height:
- (b) The number of leaves (please simplify):
- (c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

г				

\mathbf{CS}	173,	Fall	2015	
Exa	mlet	10,	Part	\mathbf{B}

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (7 points) Prof. Flitwick claims that for any functions f and g from the reals to the reals, if $f(x) \ll g(x)$ then $\log(f(x)) \ll \log(g(x))$. Is this true? Briefly justify your answer.

2. (8 points) Check the (single) box that best characterizes each item.

$$T(1) = d$$

$$T(n) = T(n/2) + c$$

$$\Theta(\log n)$$
 $\Theta(n)$

$$\Theta(n \log n)$$
 $\Theta(n^2)$

$$T(1) = d$$

$$T(n) = T(n-1) + n$$

$$\Theta(n)$$
 $\Theta(n^2)$ $\Theta(n \log n)$ $\Theta(2^n)$

n!

$$O(2^n)$$
 neither of these

 3^n is

$$\Theta(5^n)$$
 neither of these

\mathbf{CS}	173,	Fall	2015	
Exa	mlet	10.	Part	F

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 7.

$$T(1) = 5 T(n) = 3T\left(\frac{n}{7}\right) + n^2$$

- (a) The height:
- (b) The number of leaves (please simplify):
- (c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$2^{n} + 3^{n}$$
 n^{3} $100 \log n$ 3^{31} $3n \log(n^{3})$ $7n! + 2$ $173n - 173$

\mathbf{CS}	173,	Fall	2015	
Exa	amlet	10.	Part	В

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is odd.

$$T(1) = 7 T(n) = nT(n-2) + n$$

- (a) The height:
- (b) The number of leaves:
- (c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$3n^2$	$\frac{n\log n}{7}$	$(10^{10^{10}})n$	$0.001n^3$	$30\log(n^{17})$	8n! + 18	$3^n + 11^n$
--------	---------------------	-------------------	------------	------------------	----------	--------------

CS 173, Fa		NE'	TID:	;								
FIRST:					LAST:							
Discussion:	Thursday	2	3 4	' \ 1	5	Friday	9	10	11	12	1	2
1. (7 points) Supand g is $O(h)$.	pose that f, g, ϵ Must f be $O(h)$						als to	the re	eals, su	ich tha	at f is	is $O(g)$
2. (8 points) Chec	k the (single) bo	ox that	best	char	·acte	erizes each i	$ ext{tem.}$					
	blem of size n i of size n/m , had time when				< m	ı []	k = km	= m [$= 1$ [
T(1) = c $T(n) = 3T(n/3)$)+n	O(n)		$\Theta(n^2)$	2)	$\Theta(n \log n)$	$\log n$)		$\Theta(2^n$)]	
Suppose $f(n) \ll$ Is $g(n) \ll f(n)$				no	о [per	rhaps		У	es		
n^{log_23} grows	at the		er thar			slow	er th	an n^2				