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CS 173, Fall 2015

Examlet 10, Part A
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Use (strong) induction to prove the following claim:

Claim: For any sets A1, A2, . . . , An, |A1 ∪ A2 ∪ . . . ∪ An| ≤ |A1| + |A2| + . . . + |An|

Hint: remember the “Inclusion-Exclusion” formula for computing |A∪B| in terms of |A|, |B|, |A∩B|.

Solution:

Proof by induction on n.

Base Case(s): At n = 1 the claim reduces to |A1| ≤ |A1|, which is clearly true.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that |A1 ∪ A2 ∪ . . . ∪ An| ≤ |A1| + |A2| + . . . + |An|, for any sets A1, A2, . . . , An, where
n = 1, 2, . . . , k.

Inductive Step: Let A1, A2, . . . , Ak+1 be sets. Let S = A1 ∪ A2 ∪ . . . ∪ Ak.

We know that |S∪Ak+1| = |S|+|Ak+1|−|S∩Ak+1| by the Inclusion-Exclusion formula. So |S∪Ak+1| ≤
|S| + |Ak+1| because |S ∩ Ak+1| cannot be negative.

By the inductive hypothesis |S| = |A1 ∪ A2 ∪ . . . ∪ Ak| ≤ |A1| + |A2| + . . . + |Ak|.
So |A1 ∪ A2 ∪ . . . ∪ Ak+1| = |S ∪ Ak+1| ≤ |S| + |Ak+1| ≤ (|A1| + |A2| + . . . + |Ak|) + |Ak+1|.
So |A1 ∪ A2 ∪ . . . ∪ Ak+1| ≤ |A1| + |A2| + . . . + |Ak+1|, which is what we needed to prove.
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Examlet 10, Part A
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Use (strong) induction to prove the following claim:

Claim: For any natural number n and any real number x, where 0 < x < 1, (1−x)n ≥ 1−nx.

Let x be a real number, where 0 < x < 1.

Solution:

Proof by induction on n.

Base Case(s): At n = 0, (1 − x)n = (1 − x)0 = 1 and 1 − nx = 1 + 0 = 1. So (1 − x)n ≥ 1 − nx.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that (1 − x)n ≥ 1 − nx for any natural number n ≤ k, where k is a natural number.

Inductive Step: By the inductive hypothesis (1−x)k ≥ 1− kx. Notice that (1−x) is positive since
0 < x < 1. So (1 − x)k+1 ≥ (1 − x)(1 − kx).

But (1 − x)(1 − kx) = 1 − x − kx + kx2 = 1 − (1 + k)x + kx2.

And 1 − (1 + k)x + kx2 ≥ 1 − (1 + k)x because kx2 is non-negative.

So (1−x)k+1 ≥ (1−x)(1− kx) ≥ 1− (1+ k)x, and therefore (1−x)k+1 ≥ 1− (1+ k)x, which is what
we needed to show.
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Examlet 10, Part A
NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

(15 points) Use (strong) induction to prove the following claim:

Claim:
∑n

p=2
1
p2 ≤ 3

4
− 1

n
for all integers n ≥ 2

Solution: Proof by induction on n.

Base Case(s): At n = 2,
∑n

p=2
1
p2 = 1

4
≤ 3

4
− 1

2
. So the claim holds at n = 2.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that
∑n

p=2
1
p2 ≤ 3

4
− 1

n

for n = 2, 3, . . . , k

Inductive Step: Notice that 1
(k+1)2

≤ 1
k(k+1)

= (k+1)−k

k(k+1)
= 1

k
− 1

(k+1)
.

So −frac1k + 1
(k+1)2

≤ − 1
(k+1)

.

So 3
4
− frac1k + 1

(k+1)2
≤ 3

4
− 1

(k+1)
.

By the inductive hypothesis, we know that
∑k

p=2
1
p2 ≤ 3

4
− 1

k
. Using this fact and the above work, we

can compute:
∑k+1

p=2
1
p2 =

∑k

p=2
1
p2 + 1

(k+1)2
≤ (3

4
− 1

k
) + 1

(k+1)2
≤ 3

4
− 1

(k+1)

So
∑k+1

p=2
1
p2 ≤ 3

4
− 1

k+1
, which is what we needed to show.
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(15 points) Use (strong) induction to prove the following claim:

Claim: For any positive integer n,
n∑

p=1

1√
p
≥

√
n

You may use the fact that
√

n + 1 ≥ √
n for any natural number n.

Solution:

Proof by induction on n.

Base Case(s): At n = 1,
n∑

p=1

1√
p

= 1 Also
√

n = 1. So
n∑

p=1

1√
p
≥

√
n.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that
n∑

p=1

1√
p
≥

√
n for

n = 1, 2, . . . , k, for some integer k ≥ 1.

Inductive Step:
k∑

p=1

1√
p
≥

√
k by the inductive hypothesis.

So

k+1∑

p=1

1√
p

=
1√

k + 1
+

k∑

p=1

1√
p
≥ 1√

k + 1
+
√

k =
1 +

√
k
√

k + 1√
k + 1

≥ 1 +
√

k
√

k√
k + 1

=
1 + k√
k + 1

=
√

k + 1

So
k+1∑

p=1

1√
p
≥

√
k + 1, which is what we needed to show.
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(15 points) Use (strong) induction to prove the following claim:

Claim:

2n∑

k=n+1

1

k
≥ 7

12
, for any integer n ≥ 2.

Hint: recall that if x ≤ y, then 1
y
≤ 1

x

Solution:

Proof by induction on n.

Base Case(s): At n = 2,
2n∑

k=n+1

1

k
=

1

3
+

1

4
=

7

12
. So the claim holds.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that

2n∑

k=n+1

1

k
≥ 7

12
, for n = 2, 3, . . . , p.

Inductive Step: Substituing n = p+1 into the summation and then using the inductive hypothesis,
we get

2p+2∑

k=p+2

1

k
= (

2p∑

k=p+1

1

k
) + (

1

2p + 1
+

1

2p + 2
− 1

p + 1
) ≥ 7

12
+ (

1

2p + 1
+

1

2p + 2
− 1

p + 1
)

Now, notice that 1
2p+1

≥ 1
2

1
p+1

and 1
2p+2

= 1
2

1
p+1

. So 1
2p+1

+ 1
2p+2

≥ 1
p+1

. Therefore 1
2p+1

+ 1
2p+2

− 1
p+1

≥ 0.

Combining the results of the previous two paragraphs, we get

2p+2∑

k=p+2

1

k
≥ 7

12
+ (

1

2p + 1
+

1

2p + 2
− 1

p + 1
) ≥ 7

12

This is what we needed to show.
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(15 points) Let function f : Z
+ → N be defined by

f(1) = 0

f(n) = 1 + f(⌊n/2⌋), for n ≥ 2,

Use (strong) induction on n to prove that f(n) ≤ log2 n for any positive integer n. You cannot
assume that n is a power of 2. However, you can assume that the log function is increasing (if x ≤ y then
log x ≤ log y) and that ⌊x⌋ ≤ x.

Solution:

Proof by induction on n.

Base Case(s):

f(1) = 0 and log2 1 = 0 So f(1) ≤ log2 1.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that f(n) ≤ log2 n for n = 1, . . . , k − 1.

Inductive Step:

We can assume that k ≥ 2 (since we did n = 1 for the base case). So ⌊k/2⌋ must be at least 1 and
less than k. Therefore, by the inductive hypothesis, f(⌊k/2⌋) ≤ log2(⌊k/2⌋).

We know that f(k) = 1 + f(⌊k/2⌋), by the definition of f . Substituting the result of the previous
paragraph, we get that f(k) ≤ 1 + log2(⌊k/2⌋).

⌊k/2⌋ ≤ k/2. So log2(⌊k/2⌋) ≤ log2(k/2) = (log2 k) + (log2 1/2) = (log2 k) − 1.

Since f(k) ≤ 1 + log2(⌊k/2⌋) and log2(⌊k/2⌋) ≤ (log2 k) − 1, f(k) ≤ 1 + (log2 k) − 1 = (log2 k). This
is what we needed to show.


