CS 173, Fa Examlet 10	all 2015 0, Part A	NF	ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Claim: For any sets $A_1, A_2, ..., A_n, |A_1 \cup A_2 \cup ... \cup A_n| \le |A_1| + |A_2| + ... + |A_n|$

Hint: remember the "Inclusion-Exclusion" formula for computing $|A \cup B|$ in terms of $|A|, |B|, |A \cap B|$.

Solution:

Proof by induction on n.

Base Case(s): At n = 1 the claim reduces to $|A_1| \leq |A_1|$, which is clearly true.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $|A_1 \cup A_2 \cup ... \cup A_n| \le |A_1| + |A_2| + ... + |A_n|$, for any sets $A_1, A_2, ..., A_n$, where n = 1, 2, ..., k.

Inductive Step: Let $A_1, A_2, \ldots, A_{k+1}$ be sets. Let $S = A_1 \cup A_2 \cup \ldots \cup A_k$.

We know that $|S \cup A_{k+1}| = |S| + |A_{k+1}| - |S \cap A_{k+1}|$ by the Inclusion-Exclusion formula. So $|S \cup A_{k+1}| \le |S| + |A_{k+1}|$ because $|S \cap A_{k+1}|$ cannot be negative.

By the inductive hypothesis $|S| = |A_1 \cup A_2 \cup \ldots \cup A_k| \le |A_1| + |A_2| + \ldots + |A_k|$.

So $|A_1 \cup A_2 \cup \ldots \cup A_{k+1}| = |S \cup A_{k+1}| \le |S| + |A_{k+1}| \le (|A_1| + |A_2| + \ldots + |A_k|) + |A_{k+1}|.$

So $|A_1 \cup A_2 \cup \ldots \cup A_{k+1}| \leq |A_1| + |A_2| + \ldots + |A_{k+1}|$, which is what we needed to prove.

CS 173, Fall 2015 Examlet 10, Part A NETID:												
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Claim: For any natural number n and any real number x, where 0 < x < 1, $(1-x)^n \ge 1-nx$.

Let x be a real number, where 0 < x < 1.

Solution:

Proof by induction on n.

Base Case(s): At n = 0, $(1 - x)^n = (1 - x)^0 = 1$ and 1 - nx = 1 + 0 = 1. So $(1 - x)^n \ge 1 - nx$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $(1-x)^n \ge 1 - nx$ for any natural number $n \le k$, where k is a natural number.

Inductive Step: By the inductive hypothesis $(1-x)^k \ge 1-kx$. Notice that (1-x) is positive since 0 < x < 1. So $(1-x)^{k+1} \ge (1-x)(1-kx)$.

But $(1-x)(1-kx) = 1 - x - kx + kx^2 = 1 - (1+k)x + kx^2$.

And $1 - (1+k)x + kx^2 \ge 1 - (1+k)x$ because kx^2 is non-negative.

So $(1-x)^{k+1} \ge (1-x)(1-kx) \ge 1 - (1+k)x$, and therefore $(1-x)^{k+1} \ge 1 - (1+k)x$, which is what we needed to show.

CS 173, Fall 2015 Examlet 10, Part A NETID:												
FIRST:					$\mathbf{L}_{\mathbf{L}}$	AST:						
Discussion:	Thursday	2	3	4	5	Fridav	9	10	11	12	1	2

Claim: $\sum_{p=2}^{n} \frac{1}{p^2} \leq \frac{3}{4} - \frac{1}{n}$ for all integers $n \geq 2$

Solution: Proof by induction on n.

Base Case(s): At n = 2, $\sum_{p=2}^{n} \frac{1}{p^2} = \frac{1}{4} \le \frac{3}{4} - \frac{1}{2}$. So the claim holds at n = 2.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{p=2}^{n} \frac{1}{p^2} \leq \frac{3}{4} - \frac{1}{n}$ for $n = 2, 3, \ldots, k$

Inductive Step: Notice that $\frac{1}{(k+1)^2} \le \frac{1}{k(k+1)} = \frac{(k+1)-k}{k(k+1)} = \frac{1}{k} - \frac{1}{(k+1)}$. So $-frac 1k + \frac{1}{(k+1)^2} \le -\frac{1}{(k+1)}$. So $\frac{3}{4} - frac 1k + \frac{1}{(k+1)^2} \le \frac{3}{4} - \frac{1}{(k+1)}$.

By the inductive hypothesis, we know that $\sum_{p=2}^{k} \frac{1}{p^2} \leq \frac{3}{4} - \frac{1}{k}$. Using this fact and the above work, we can compute:

 $\sum_{p=2}^{k+1} \frac{1}{p^2} = \sum_{p=2}^{k} \frac{1}{p^2} + \frac{1}{(k+1)^2} \le \left(\frac{3}{4} - \frac{1}{k}\right) + \frac{1}{(k+1)^2} \le \frac{3}{4} - \frac{1}{(k+1)}$ So $\sum_{p=2}^{k+1} \frac{1}{p^2} \le \frac{3}{4} - \frac{1}{k+1}$, which is what we needed to show.

CS 173, Fa Examlet 1	NF	ETI	D:									
FIRST:						AST:						
Discussion	Thursday	2	ર	1	5	Friday	Q	10	11	12	1	2

Claim: For any positive integer $n, \, \sum_{p=1}^n \frac{1}{\sqrt{p}} \geq \sqrt{n}$

You may use the fact that $\sqrt{n+1} \ge \sqrt{n}$ for any natural number n.

Solution:

Proof by induction on n.

Base Case(s): At
$$n = 1$$
, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} = 1$ Also $\sqrt{n} = 1$. So $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge \sqrt{n}$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge \sqrt{n}$ for n = 1, 2, ..., k, for some integer $k \ge 1$.

Inductive Step: $\sum_{p=1}^{k} \frac{1}{\sqrt{p}} \ge \sqrt{k}$ by the inductive hypothesis.

 So

$$\sum_{p=1}^{k+1} \frac{1}{\sqrt{p}} = \frac{1}{\sqrt{k+1}} + \sum_{p=1}^{k} \frac{1}{\sqrt{p}} \ge \frac{1}{\sqrt{k+1}} + \sqrt{k} = \frac{1+\sqrt{k}\sqrt{k+1}}{\sqrt{k+1}} \ge \frac{1+\sqrt{k}\sqrt{k}}{\sqrt{k+1}} = \frac{1+k}{\sqrt{k+1}} = \sqrt{k+1}$$
So $\sum_{p=1}^{k+1} \frac{1}{\sqrt{p}} \ge \sqrt{k+1}$, which is what we needed to show.

CS 173, Fa Examlet 1	ETI	D:										
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Fridav	9	10	11	12	1	2

Claim:
$$\sum_{k=n+1}^{2n} \frac{1}{k} \ge \frac{7}{12}$$
, for any integer $n \ge 2$.

Hint: recall that if $x \leq y$, then $\frac{1}{y} \leq \frac{1}{x}$

Solution:

Proof by induction on n.

Base Case(s): At n = 2, $\sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}$. So the claim holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $\sum_{k=n+1}^{2n} \frac{1}{k} \ge \frac{7}{12}$, for n = 2, 3, ..., p.

Inductive Step: Substituing n = p + 1 into the summation and then using the inductive hypothesis, we get

$$\sum_{k=p+2}^{2p+2} \frac{1}{k} = \left(\sum_{k=p+1}^{2p} \frac{1}{k}\right) + \left(\frac{1}{2p+1} + \frac{1}{2p+2} - \frac{1}{p+1}\right) \ge \frac{7}{12} + \left(\frac{1}{2p+1} + \frac{1}{2p+2} - \frac{1}{p+1}\right)$$

Now, notice that $\frac{1}{2p+1} \ge \frac{1}{2}\frac{1}{p+1}$ and $\frac{1}{2p+2} = \frac{1}{2}\frac{1}{p+1}$. So $\frac{1}{2p+1} + \frac{1}{2p+2} \ge \frac{1}{p+1}$. Therefore $\frac{1}{2p+1} + \frac{1}{2p+2} - \frac{1}{p+1} \ge 0$. Combining the results of the previous two paragraphs, we get

$$\sum_{k=p+2}^{2p+2} \frac{1}{k} \ge \frac{7}{12} + \left(\frac{1}{2p+1} + \frac{1}{2p+2} - \frac{1}{p+1}\right) \ge \frac{7}{12}$$

This is what we needed to show.

CS 173, Fa Examlet 1	NI	ETI	D:									
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

(15 points) Let function $f: \mathbb{Z}^+ \to \mathbb{N}$ be defined by

f(1) = 0

 $f(n) = 1 + f(\lfloor n/2 \rfloor)$, for $n \ge 2$,

Use (strong) induction on n to prove that $f(n) \leq \log_2 n$ for any positive integer n. You cannot assume that n is a power of 2. However, you can assume that the log function is increasing (if $x \leq y$ then $\log x \leq \log y$) and that $\lfloor x \rfloor \leq x$.

Solution:

Proof by induction on n.

Base Case(s):

f(1) = 0 and $\log_2 1 = 0$ So $f(1) \le \log_2 1$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $f(n) \leq \log_2 n$ for $n = 1, \dots, k - 1$.

Inductive Step:

We can assume that $k \ge 2$ (since we did n = 1 for the base case). So $\lfloor k/2 \rfloor$ must be at least 1 and less than k. Therefore, by the inductive hypothesis, $f(\lfloor k/2 \rfloor) \le \log_2(\lfloor k/2 \rfloor)$.

We know that $f(k) = 1 + f(\lfloor k/2 \rfloor)$, by the definition of f. Substituting the result of the previous paragraph, we get that $f(k) \leq 1 + \log_2(\lfloor k/2 \rfloor)$.

 $\lfloor k/2 \rfloor \le k/2$. So $\log_2(\lfloor k/2 \rfloor) \le \log_2(k/2) = (\log_2 k) + (\log_2 1/2) = (\log_2 k) - 1$.

Since $f(k) \leq 1 + \log_2(\lfloor k/2 \rfloor)$ and $\log_2(\lfloor k/2 \rfloor) \leq (\log_2 k) - 1$, $f(k) \leq 1 + (\log_2 k) - 1 = (\log_2 k)$. This is what we needed to show.