CS 173, Fall 2015 Examlet 10, Part A

FIRST:

Discussion: \quad Thursday $22 \begin{array}{lllllllllll} & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(15 points) Use (strong) induction to prove the following claim:

Claim: For any sets $A_{1}, A_{2}, \ldots, A_{n},\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right| \leq\left|A_{1}\right|+\left|A_{2}\right|+\ldots+\left|A_{n}\right|$
Hint: remember the "Inclusion-Exclusion" formula for computing $|A \cup B|$ in terms of $|A|,|B|,|A \cap B|$.

Solution:

Proof by induction on n.
Base Case(s): At $n=1$ the claim reduces to $\left|A_{1}\right| \leq\left|A_{1}\right|$, which is clearly true.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right| \leq\left|A_{1}\right|+\left|A_{2}\right|+\ldots+\left|A_{n}\right|$, for any sets $A_{1}, A_{2}, \ldots, A_{n}$, where $n=1,2, \ldots, k$.

Inductive Step: Let $A_{1}, A_{2}, \ldots, A_{k+1}$ be sets. Let $S=A_{1} \cup A_{2} \cup \ldots \cup A_{k}$.
We know that $\left|S \cup A_{k+1}\right|=|S|+\left|A_{k+1}\right|-\left|S \cap A_{k+1}\right|$ by the Inclusion-Exclusion formula. So $\left|S \cup A_{k+1}\right| \leq$ $|S|+\left|A_{k+1}\right|$ because $\left|S \cap A_{k+1}\right|$ cannot be negative.

By the inductive hypothesis $|S|=\left|A_{1} \cup A_{2} \cup \ldots \cup A_{k}\right| \leq\left|A_{1}\right|+\left|A_{2}\right|+\ldots+\left|A_{k}\right|$.
So $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{k+1}\right|=\left|S \cup A_{k+1}\right| \leq|S|+\left|A_{k+1}\right| \leq\left(\left|A_{1}\right|+\left|A_{2}\right|+\ldots+\left|A_{k}\right|\right)+\left|A_{k+1}\right|$.
So $\left|A_{1} \cup A_{2} \cup \ldots \cup A_{k+1}\right| \leq\left|A_{1}\right|+\left|A_{2}\right|+\ldots+\left|A_{k+1}\right|$, which is what we needed to prove.

CS 173, Fall 2015 Examlet 10, Part A

FIRST:

Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(15 points) Use (strong) induction to prove the following claim:

Claim: For any natural number n and any real number x, where $0<x<1,(1-x)^{n} \geq 1-n x$.

Let x be a real number, where $0<x<1$.

Solution:

Proof by induction on n.
Base Case(s): At $n=0,(1-x)^{n}=(1-x)^{0}=1$ and $1-n x=1+0=1$. So $(1-x)^{n} \geq 1-n x$.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $(1-x)^{n} \geq 1-n x$ for any natural number $n \leq k$, where k is a natural number.
Inductive Step: By the inductive hypothesis $(1-x)^{k} \geq 1-k x$. Notice that $(1-x)$ is positive since $0<x<1$. So $(1-x)^{k+1} \geq(1-x)(1-k x)$.

But $(1-x)(1-k x)=1-x-k x+k x^{2}=1-(1+k) x+k x^{2}$.
And $1-(1+k) x+k x^{2} \geq 1-(1+k) x$ because $k x^{2}$ is non-negative.
So $(1-x)^{k+1} \geq(1-x)(1-k x) \geq 1-(1+k) x$, and therefore $(1-x)^{k+1} \geq 1-(1+k) x$, which is what we needed to show.

CS 173, Fall 2015 Examlet 10, Part A
 NETID:

FIRST:

LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(15 points) Use (strong) induction to prove the following claim:

Claim: $\sum_{p=2}^{n} \frac{1}{p^{2}} \leq \frac{3}{4}-\frac{1}{n}$ for all integers $n \geq 2$

Solution: Proof by induction on n.
Base Case(s): At $n=2, \sum_{p=2}^{n} \frac{1}{p^{2}}=\frac{1}{4} \leq \frac{3}{4}-\frac{1}{2}$. So the claim holds at $n=2$.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{p=2}^{n} \frac{1}{p^{2}} \leq \frac{3}{4}-\frac{1}{n}$ for $n=2,3, \ldots, k$

Inductive Step: Notice that $\frac{1}{(k+1)^{2}} \leq \frac{1}{k(k+1)}=\frac{(k+1)-k}{k(k+1)}=\frac{1}{k}-\frac{1}{(k+1)}$.
So $-f r a c 1 k+\frac{1}{(k+1)^{2}} \leq-\frac{1}{(k+1)}$.
So $\frac{3}{4}-f r a c 1 k+\frac{1}{(k+1)^{2}} \leq \frac{3}{4}-\frac{1}{(k+1)}$.
By the inductive hypothesis, we know that $\sum_{p=2}^{k} \frac{1}{p^{2}} \leq \frac{3}{4}-\frac{1}{k}$. Using this fact and the above work, we can compute:
$\sum_{p=2}^{k+1} \frac{1}{p^{2}}=\sum_{p=2}^{k} \frac{1}{p^{2}}+\frac{1}{(k+1)^{2}} \leq\left(\frac{3}{4}-\frac{1}{k}\right)+\frac{1}{(k+1)^{2}} \leq \frac{3}{4}-\frac{1}{(k+1)}$
So $\sum_{p=2}^{k+1} \frac{1}{p^{2}} \leq \frac{3}{4}-\frac{1}{k+1}$, which is what we needed to show.

CS 173, Fall 2015 Examlet 10, Part A

Discussion: $\begin{array}{llllllllllll}\text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(15 points) Use (strong) induction to prove the following claim:

Claim: For any positive integer $n, \sum_{p=1}^{n} \frac{1}{\sqrt{p}} \geq \sqrt{n}$

You may use the fact that $\sqrt{n+1} \geq \sqrt{n}$ for any natural number n.

Solution:

Proof by induction on n.
Base Case(s): At $n=1, \sum_{p=1}^{n} \frac{1}{\sqrt{p}}=1$ Also $\sqrt{n}=1$. So $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \geq \sqrt{n}$.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \geq \sqrt{n}$ for $n=1,2, \ldots, k$, for some integer $k \geq 1$.

Inductive Step: $\sum_{p=1}^{k} \frac{1}{\sqrt{p}} \geq \sqrt{k}$ by the inductive hypothesis.
So
$\sum_{p=1}^{k+1} \frac{1}{\sqrt{p}}=\frac{1}{\sqrt{k+1}}+\sum_{p=1}^{k} \frac{1}{\sqrt{p}} \geq \frac{1}{\sqrt{k+1}}+\sqrt{k}=\frac{1+\sqrt{k} \sqrt{k+1}}{\sqrt{k+1}} \geq \frac{1+\sqrt{k} \sqrt{k}}{\sqrt{k+1}}=\frac{1+k}{\sqrt{k+1}}=\sqrt{k+1}$
So $\sum_{p=1}^{k+1} \frac{1}{\sqrt{p}} \geq \sqrt{k+1}$, which is what we needed to show.

CS 173, Fall 2015 Examlet 10, Part A
 NETID:

FIRST:

LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(15 points) Use (strong) induction to prove the following claim:

Claim: $\sum_{k=n+1}^{2 n} \frac{1}{k} \geq \frac{7}{12}$, for any integer $n \geq 2$.

Hint: recall that if $x \leq y$, then $\frac{1}{y} \leq \frac{1}{x}$

Solution:

Proof by induction on n.
Base Case(s): At $n=2, \sum_{k=n+1}^{2 n} \frac{1}{k}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}$. So the claim holds.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $\sum_{k=n+1}^{2 n} \frac{1}{k} \geq \frac{7}{12}$, for $n=2,3, \ldots, p$.
Inductive Step: Substituing $n=p+1$ into the summation and then using the inductive hypothesis, we get

$$
\sum_{k=p+2}^{2 p+2} \frac{1}{k}=\left(\sum_{k=p+1}^{2 p} \frac{1}{k}\right)+\left(\frac{1}{2 p+1}+\frac{1}{2 p+2}-\frac{1}{p+1}\right) \geq \frac{7}{12}+\left(\frac{1}{2 p+1}+\frac{1}{2 p+2}-\frac{1}{p+1}\right)
$$

Now, notice that $\frac{1}{2 p+1} \geq \frac{1}{2} \frac{1}{p+1}$ and $\frac{1}{2 p+2}=\frac{1}{2} \frac{1}{p+1}$. So $\frac{1}{2 p+1}+\frac{1}{2 p+2} \geq \frac{1}{p+1}$. Therefore $\frac{1}{2 p+1}+\frac{1}{2 p+2}-\frac{1}{p+1} \geq 0$.
Combining the results of the previous two paragraphs, we get

$$
\sum_{k=p+2}^{2 p+2} \frac{1}{k} \geq \frac{7}{12}+\left(\frac{1}{2 p+1}+\frac{1}{2 p+2}-\frac{1}{p+1}\right) \geq \frac{7}{12}
$$

This is what we needed to show.

CS 173, Fall 2015
 Examlet 10, Part A
 NETID:

FIRST:
Discussion: Thursday $22 \begin{array}{lllllllllll} & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$
(15 points) Let function $f: \mathbb{Z}^{+} \rightarrow \mathbb{N}$ be defined by

$$
\begin{aligned}
& f(1)=0 \\
& f(n)=1+f(\lfloor n / 2\rfloor), \text { for } n \geq 2
\end{aligned}
$$

Use (strong) induction on n to prove that $f(n) \leq \log _{2} n$ for any positive integer n. You cannot assume that n is a power of 2 . However, you can assume that the log function is increasing (if $x \leq y$ then $\log x \leq \log y)$ and that $\lfloor x\rfloor \leq x$.

Solution:

Proof by induction on n.

Base Case(s):

$f(1)=0$ and $\log _{2} 1=0$ So $f(1) \leq \log _{2} 1$.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $f(n) \leq \log _{2} n$ for $n=1, \ldots, k-1$.

Inductive Step:

We can assume that $k \geq 2$ (since we did $n=1$ for the base case). So $\lfloor k / 2\rfloor$ must be at least 1 and less than k. Therefore, by the inductive hypothesis, $f(\lfloor k / 2\rfloor) \leq \log _{2}(\lfloor k / 2\rfloor)$.

We know that $f(k)=1+f(\lfloor k / 2\rfloor)$, by the definition of f. Substituting the result of the previous paragraph, we get that $f(k) \leq 1+\log _{2}(\lfloor k / 2\rfloor)$.
$\lfloor k / 2\rfloor \leq k / 2$. So $\log _{2}(\lfloor k / 2\rfloor) \leq \log _{2}(k / 2)=\left(\log _{2} k\right)+\left(\log _{2} 1 / 2\right)=\left(\log _{2} k\right)-1$.
Since $f(k) \leq 1+\log _{2}(\lfloor k / 2\rfloor)$ and $\log _{2}(\lfloor k / 2\rfloor) \leq\left(\log _{2} k\right)-1, f(k) \leq 1+\left(\log _{2} k\right)-1=\left(\log _{2} k\right)$. This is what we needed to show.

