CS 173, Fall 2015 Examlet 10, Part A			NETID:										
FIRST:						AST:							
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2	

Claim: For any sets $A_1, A_2, ..., A_n, |A_1 \cup A_2 \cup ... \cup A_n| \le |A_1| + |A_2| + ... + |A_n|$

Hint: remember the "Inclusion-Exclusion" formula for computing $|A \cup B|$ in terms of $|A|, |B|, |A \cap B|$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

CS 173, Fall 2015 Examlet 10, Part A			ETI	D:								
FIRST:						AST:						
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Claim: For any natural number n and any real number x, where 0 < x < 1, $(1-x)^n \ge 1-nx$.

Let x be a real number, where 0 < x < 1. Proof by induction on n. Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

CS 173, Fall 2015 Examlet 10, Part A			NETID:									
FIRST:				$\mathbf{L}_{\mathbf{L}}$	AST:							
Discussion:	Thursday	2	3	4	5	Friday	9	10	11	12	1	2

Claim: $\sum_{p=2}^{n} \frac{1}{p^2} \le \frac{3}{4} - \frac{1}{n}$ for all integers $n \ge 2$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

CS 173, Fall 2015 NETID: Examlet 10, Part A LAST: FIRST: **Discussion:** Thursday $\mathbf{2}$ 3 4 $\mathbf{5}$ 9 1011 121 $\mathbf{2}$ Friday

(15 points) Use (strong) induction to prove the following claim:

Claim: For any positive integer $n, \, \sum_{p=1}^n \frac{1}{\sqrt{p}} \geq \sqrt{n}$

You may use the fact that $\sqrt{n+1} \ge \sqrt{n}$ for any natural number n. Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Claim:
$$\sum_{k=n+1}^{2n} \frac{1}{k} \ge \frac{7}{12}$$
, for any integer $n \ge 2$.

Hint: recall that if $x \leq y$, then $\frac{1}{y} \leq \frac{1}{x}$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

(15 points) Let function $f: \mathbb{Z}^+ \to \mathbb{N}$ be defined by

- f(1) = 0
- $f(n) = 1 + f(\lfloor n/2 \rfloor)$, for $n \ge 2$,

Use (strong) induction on n to prove that $f(n) \leq \log_2 n$ for any positive integer n. You cannot assume that n is a power of 2. However, you can assume that the log function is increasing (if $x \leq y$ then $\log x \leq \log y$) and that $\lfloor x \rfloor \leq x$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: