CS 173, Fall 2015 Examlet 1, Part A

NETID:

FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every computer game g, if g has trendy music or g has an interesting plotline, then g is not cheap.
2. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every book b, if b is blue or b is not heavy, then b is not a math book.
3. (5 points) Solve $3 x+2 m=\frac{w}{y}$ for x, expressing your answer as a single fraction. Show your work.

CS 173, Fall 2015 Examlet 1, Part A

FIRST:

LAST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every dragon d, if d is green, then d is not large or d is fat.
2. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every book b, if b is blue or b is not heavy, then b is not a math book.
3. (5 points) Suppose that G and H are functions whose inputs and outputs are real numbers, defined by $G(x)=x+7$ and $H(x)=\sqrt{x-1}$. Compute the value of $G(H(H(2)))$, showing your work.

CS 173, Fall 2015 Examlet 1, Part A

FIRST:

LAST:

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1\end{array}$

1. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For any student s, if s rides a bicycle, then s wears a helmet or s has no fear of death.
2. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every tree t, if t grows in Canada, then t is not tall or t is a conifer.
3. (5 points) Solve $\frac{4 p^{2}-9}{2 p+3}=5$ for p. Show your work.

CS 173, Fall 2015 Examlet 1, Part A

NETID:

FIRST:

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & 2 & 3 & 4 & 5 & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2\end{array}$

1. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For any student s, if s rides a bicycle, then s wears a helmet or s has no fear of death.
2. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every dinosaur d, if d is small and d is not a juvenile, then d is not a sauropod.
3. (5 points) Suppose that k is a positive integer, x is a positive real number, and $\frac{1}{k}+x=\frac{1}{6}$. What are the possible values for k ? (Hint: k is an INTEGER.) Briefly explain or show work.

CS 173, Fall 2015 Examlet 1, Part A

1. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

There is a dorm room d, such that d has green walls and d has no window.
2. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every tree t, if t grows in Canada, then t is not tall or t is a conifer.
3. (5 points) Suppose that m and p are positive integers such that $2 p^{2}+m p<6$. What are the possible values for m ? Briefly explain or show work.

CS 173, Fall 2015 Examlet 1, Part A

1. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For any bear b, if b is blue and b talks, then b is fuzzy.
3. (5 points) Suppose that G and H are functions whose inputs and outputs are real numbers, defined by $G(x)=x-5$ and $H(x)=\sqrt{x+1}$. Compute the value of $H(H(G(13)))$, showing your work.
2. (5 points) Give a truth table for the following expression and (using your truth table or other means) find a simpler expression equivalent to it.

$$
r \rightarrow(q \rightarrow r)=
$$

q	r	$q \rightarrow r$	$r \rightarrow(q \rightarrow r)$
T	T		
T	F		
F	T		
F	F		

