1. Nested Quantifiers

Prove or disprove the statements in (a), (b), and (d). **Hint:** these proofs/disproofs are meant to be very brief.

(a) \(\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, \text{GCD}(x, y) = 1 \)

Solution: True. Let \(x = 1 \). Note that GCD(1, y) = 1 for any choice of y since 1 divides all natural numbers (including 0).

(b) \(\forall x \in \mathbb{Z}^+, \exists y \in \mathbb{Z}^+, x = y^2 \)

Solution: This says that all positive integers are perfect squares, which is false. Choose \(x = 2 \). If there were an integer \(y \) such that \(2 = y^2 \), then, \(y = \sqrt{3} \) must be an integer, which is absurd.

(c) Suppose that \(f \) is a function from \(\mathbb{Z}_6 \) to \(\mathbb{Z}_8 \), and \(\exists c \in \mathbb{Z}_8, \forall x \in \mathbb{Z}_6, f(x) = c \).

Solution: The function \(f \) sends all inputs to a single output \(c \in \mathbb{Z}_8 \), i.e., it is a constant function.

(d) \(\exists f : \mathbb{Z}_6 \to \mathbb{Z}_8, \exists c \in \mathbb{Z}_8, \forall x \in \mathbb{Z}_6, f(x) = c \)

Solution: True. Let \(c = [0] \) and simply take \(f \) to be the constant function which sends all inputs \(x \in \mathbb{Z}_6 \) to \([0] \in \mathbb{Z}_8 \), i.e., \(f(x) = [0] \) for all \(x \in \mathbb{Z}_6 \).

Function Proofs

(a) Suppose that \(g : A \to B \) and \(f : B \to C \). Prof. Snape claims that if \(f \circ g \) is onto, then \(g \) is onto. Disprove this claim using a concrete counter-example in which \(A \), \(B \), and \(C \) are all small finite sets.

Solution: Suppose that \(A = \{1, 2\} \), \(B = \{3, 4, 5\} \), and \(C = \{\text{red, blue}\} \). Define \(g \) by \(g(1) = 3 \) and \(g(2) = 5 \). Define \(f \) by \(f(3) = \text{red}, f(4) = \text{red}, \) and \(f(5) = \text{blue} \). Then \((f \circ g)(1) = \text{red} \) and \((f \circ g)(2) = \text{blue} \). So \(f \circ g \) is onto because every element of \(C \) has a pre-image. However, \(g \) isn’t onto because no element of \(A \) maps onto 4.

(b) Suppose that \(g : \mathbb{Z} \to \mathbb{Z} \) is one-to-one. Let’s define the function \(f : \mathbb{Z} \to \mathbb{Z}^2 \) by \(f(x) = (x^2, g(x)) \). Prove that \(f \) is one-to-one.

Solution: Let \(x \) and \(y \) be integers. Suppose that \(f(x) = f(y) \). By the definition of \(f \), this means that \((x^2, g(x)) = (y^2, g(y)) \). So then \(x^2 = y^2 \) and \(g(x) = g(y) \). Since \(g(x) = g(y) \) and \(g \) is one-to-one, \(x = y \). So we have that \(f(x) = f(y) \) implies \(x = y \). This means that \(f \) is one-to-one.

(c) Define the function \(f \) as follows:

- \(f(1) = 1 \)
- \(f(2) = 5 \)
• \(f(n + 1) = 5f(n) - 6f(n - 1) \)

Suppose we’re proving that \(f(n) = 3^n - 2^n \) for every positive integer \(n \). State the inductive hypothesis and the conclusion of the inductive step.

Solution: Inductive hypothesis: suppose that \(f(n) = 3^n - 2^n \) for \(n = 1, 2, \ldots k \), for some integer \(k \).

Conclusion of the inductive step: \(f(k + 1) = 3^{k+1} - 2^{k+1} \).

Note 1: a strong hypothesis is required because the formula reaches back two integers.

Note 2: the variable \(k \) in the conclusion matches the upper bound in the hypothesis. A common mistake is to have it match the variable in the hypothesis equation \((n) \). We’re assuming that the equation holds for all values up through \(k \), so we need to prove it holds for \(k + 1 \).

Induction

Let the function \(f : \mathbb{N} \to \mathbb{Z} \) be defined by

\[
\begin{align*}
f(0) &= 1 \\
f(1) &= 6 \\
\forall n \geq 2, f(n) &= 6f(n - 1) - 9f(n - 2)
\end{align*}
\]

Use strong induction on \(n \) to prove that \(\forall n \geq 0, f(n) = (1 + n)3^n \).

Base case(s):

Solution: \(f(0) = 1 = (1 + 0)3^0 \) and \(f(1) = 6 = (1 + 1)3^1 \). We need to check two base cases because the inductive step will reach back two integers.

Inductive hypothesis [Be specific, don’t just refer to “the claim”]:

Solution: Suppose that \(f(n) = (1 + n)3^n \) for \(n = 0, 1, \ldots, k \), for some \(k \geq 1 \).

Rest of the inductive step:

Solution: \(f(k + 1) = 6f(k) - 9f(k - 1) \) by the definition of \(f \). By the inductive hypothesis, we know that \(f(k) = (1 + k)3^k \) and \(f(k - 1) = k3^{k-1} \). So by substituting, we get

\[
\begin{align*}
f(k + 1) &= 6(1 + k)3^k - 9k3^{k-1} \\
&= 2(1 + k)3^{k+1} - k3^{k+1} \\
&= 2 \cdot 3^{k+1} + k3^{k+1} - k3^{k+1} \\
&= 2 \cdot 3^{k+1} + k3^{k+1} \\
&= (k + 2)3^{k+1}
\end{align*}
\]

So \(f(k + 1) = (k + 2)3^{k+1} \), which is what we needed to show.
(a) How many connected components does each graph have?
Solution: G1 has two connected components. G2 and G3 each have one connected component.

(b) Are graphs G1 and G2 (above) isomorphic? Briefly justify your answer.
Solution: No. G2 is connected, but G1 isn’t connected. Also, G2 contains a cycle with 6 vertices, and G1 doesn’t.

(c) What is the diameter of G3?
Solution: 4. (It’s the number of edges on a shortest path between the two vertices furthest apart. In this case, y and either q or r.)

(d) Does G3 contain an Euler circuit? Why or why not?
Solution: No, it can’t contain an Euler circuit because some of the vertices (e.g. p) have odd degree.

(e) Does G2 and/or G3 contain a cut edge? If so, identify which edge(s) are cut edges.
Solution: G3 contains a cut edge: the edge connecting p and s. G2 does not contain a cut edge.

(f) How many isomorphisms are there from G3 to G3? Justify your answer or show work.
Solution: p is the only degree-3 node which is connected to two degree-2 nodes. So p must map to itself. Similarly, s must map to itself because it’s the only node whose neighbors all have degree 3.
However, r and q can be interchanged without changing the graph structure.
We can also interchange t and w without changing the graph structure.
So we have $2 \times 2 = 4$ isomorphisms of G3 to itself.