CS 173, Spring 2013, A Lecture
Midterm 1, 19 February 2013

NAME:

NETID (e.g. hpotter23, not 314159265):

Circle your discussion:

<table>
<thead>
<tr>
<th></th>
<th>Th 11</th>
<th>Th 12</th>
<th>Th 1</th>
<th>Fri 12</th>
<th>Fri 1</th>
<th>Fri 2</th>
<th>Fri 3</th>
</tr>
</thead>
</table>
| You will lose a point if don’t circle the discussion you are officially registered for. Check the rosters at the podium if you aren’t sure. Check here □ if you have changed section within the last week.

<table>
<thead>
<tr>
<th>Problem</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible</td>
<td>15</td>
<td>15</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>15</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We will be checking photo ID’s during the exam. Have your ID handy.
(Forgot your ID? See us at the end of the exam.)

Turn in your exam at the front when you are done.

You have 75 minutes to finish the exam.
INSTRUCTIONS (read carefully)

- There are 7 problems, each on a separate page. Make sure you have a complete exam. The point value of each problem is indicated next to the problem, and on the cover page table.

- Points may be deducted for solutions which are correct, but hard to read, hard to understand, poorly explained, or excessively complicated.

- When writing proofs, use your best mathematical style, e.g. introduce variables and assumptions, justify important or non-obvious steps, put your steps in logical order.

- Brief explanations and/or showing work, even when not explicitly asked for, may increase partial credit for buggy answers. Partial credit for multiple-choice questions is very rare.

- It is not necessary to simplify or calculate out complex constant expressions such as \((0.7)^3(0.3)^5\), \(\frac{0.15}{3.75}\), \(3^{17}\), and \(7!\), unless it is explicitly indicated to completely simplify.

- It is wise to skim all problems and point values first, to best plan your time.

- This is a closed book exam.
 Turn off your cell phone now.
 No notes or electronic devices of any kind are allowed.
 These should be secured in your bag and out of reach during the exam.

- Do all work in the space provided, using the backs of sheets if necessary.
 If your work is on the backside then you must clearly indicate so on the problem.
 See the proctor if you need more paper.

- Please bring any apparent bugs or ambiguity to the attention of the proctors.

- After the midterm is over, you may discuss its contents with other students only after verifying that they have also taken the exam (e.g. they aren’t about to take a makeup exam).
Problem 1: Multiple choice (15 points)

Check the most appropriate box for each statement. Check only one box per statement. If you change your answer, make sure it’s easy to tell which box is your final selection.

\[\forall x \in \mathbb{Z}, \ x^2 < -3 \rightarrow x > 10 \]
- true
- undefined truth value
- false

\[p \rightarrow \neg q \equiv \neg q \lor \neg p \]
- True
- False

\[\text{gcd}(a, 0) \]
- a
- 0
- 1
- undefined

\[-7 \equiv 3 \pmod{5} \]
- true
- false

\[\text{lcm}(6, 10) \]
- 6
- 10
- 30
- 60
Problem 2: Short answer (15 points)

(a) (10 points) Check all boxes that correctly characterize this relation on the set \{A, B, C, D, E, F\}

- Reflexive: []
- Irreflexive: []
- Symmetric: []
- Antisymmetric: []
- Transitive: []

(b) (5 points) The following picture shows the contents of a set A. Complete it to make an example of a function from A to B that is onto but not one-to-one. To complete the picture, add elements to set B (represent each element in B with an integer) and draw arrows showing how input values map to output values.

A
- milk
- horchata
- coffee
- tea

B
Problem 3: Short answer (12 points)

(a) (6 points) Let $f : \mathbb{R} \to \mathbb{R}, f(x) = (x - 1)^2$ and $g : \mathbb{R} \to \mathbb{R}, g(x) = 3x$. Write the expression for $(f \circ g)(x)$, and compute $(f \circ g)(3)$. Show your work.

(b) (6 points) Suppose we have the following sets:

\[
A = \{\text{green, red}\}
\]

\[
B = \{3, 8\}
\]

\[
C = \{4, 8\}
\]

\[
A \times (B \cup C) =
\]

\[
\{\text{camel}\} \times (B \cap C) =
\]

\[
A \cap C =
\]
Problem 4: Short answer (14 points)

(a) (6 points) State the negation of the following claim. Your answer should be in words, with all negations (e.g. “not”) on individual predicates.

For every dinosaur \(d\), if \(d\) is huge, then \(d\) is an adult or \(d\) is a sauropod.

(b) (8 points) In \(\mathbb{Z}_{13}\), find the value of \([7]^{19}\). You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as \([n]\), where \(0 \leq n \leq 12\).
Problem 5: Relations (12 points)

(a) (6 points) Suppose that R is a partial order on a set A. What additional property is required for R to be a linear order (aka total order)? Give specific details of the property, not just its name.

(b) (6 points) Suppose that R is the relation on the set of integers such that pRq if and only if $p \leq q + 3$. Is R transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.
Problem 6: Proof (15 points)

Recall that \([a, b]\) is a closed interval of the real line. You can assume that \(a \leq b\) for any closed interval. Let \(I\) be the set containing all closed intervals \([a, b]\). Finally, the relation \(B\) on \(I\) is defined by

\[
[a,b]B[p,q] \text{ if and only if } b \leq p
\]

There are two equivalent definitions for what it means for \(R\) defined on set \(A\) to be antisymmetric:

Definition 1: \(\forall x, y \in A, \text{ if } x \neq y \text{ and } xRy, \text{ then } yRx\)
Definition 2: \(\forall x, y \in A, \text{ if } xRy \text{ and } yRx, \text{ then } x = y\)

Prove that \(B\) is antisymmetric using one of these definitions.
Problem 7: Proof (17 points)

\[A = \{(p, q) \in \mathbb{Z}^2 \mid p \equiv 3 \pmod{7} \text{ and } q \equiv 4 \pmod{7}\} \]
\[B = \{(s, t) \in \mathbb{Z}^2 \mid st \equiv 5 \pmod{7}\} \]

Congruence mod \(k \) can be defined as follows: if \(a, b, k \) are integers, \(k \) positive, then \(a \equiv b \pmod{k} \) if and only if \(a = b + nk \) for some integer \(n \). Using this definition, prove that \(A \subseteq B \).

Use your best mathematical style, e.g. introduce variables and assumptions, justify important or non-obvious steps, put your steps in logical order. Use only the given definition and algebra, not any facts you might know about modular arithmetic.