Design & Analysis of Algorithms
Lecture 19
Recursion
Recursion

Given an array L, find max among numbers between position start and end (inclusive)

```java
findmax (L, start, end) {
    if (start == end)
        return L[start]
    else {
        mid = (start+end)/2
        x = findmax(L,start,mid)
        y = findmax(L,mid+1,end)
        if (x>y) return x
        else return y
    }
}
```
Recursion

Given an array L, find max among numbers between position start and end (inclusive)

```c
findmax (L, start, end) {
    if (start == end)
        return L[start]
    else {
        mid = \lfloor (start+end)/2 \rfloor
        x = findmax(L,start,mid)
        y = findmax(L,mid+1,end)
        if (x>y) return x
        else return y
    }
}
```

Time T(n) taken by findmax(L,a,a+n-1)?
Recursion

Given an array L, find max among numbers between position start and end (inclusive)

\[
\text{findmax (} L, \text{ start, end) } \{ \\
\text{if (start == end) return } L[\text{start}] \\
\text{else } \{ \\
\text{mid = } \lfloor (\text{start+end})/2 \rfloor \\
\text{x = findmax(} L, \text{start, mid) } \\
\text{y = findmax(} L, \text{mid+1, end) } \\
\text{if (x>y) return x} \\
\text{else return y} \\
\}\}
\]

Time T(n) taken by findmax(} L, \text{a,a+n-1)? \\
T(1) = c_1
Recursion

Given an array L, find max among numbers between position start and end (inclusive)

```java
findmax (L, start, end) {
    if (start == end)
        return L[start]
    else {
        mid = ⌊(start+end)/2⌋
        x = findmax(L,start,mid)
        y = findmax(L,mid+1,end)
        if (x>y) return x
        else return y
    }
}
```

Time T(n) taken by
```
findmax(L,a,a+n-1)?
T(1) = c_1
T(n) = T( ⌊n/2⌋ ) + T( ⌈n/2⌉ ) + c_2
```
Recursion

Given an array L, find max among numbers between position start and end (inclusive)

```java
findmax (L, start, end) {
    if (start == end)
        return L[start]
    else {
        mid = ⌊(start+end)/2⌋
        x = findmax(L,start,mid)
        y = findmax(L,mid+1,end)
        if (x>y) return x
        else return y
    }
}
```

Time T(n) taken by findmax(L,a,a+n-1)?

\[T(1) = c_1 \]

\[T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2 \]

Binary recursion tree with \(c_2 \) on each internal node. \(c_1 \) at leaves.
Recursion

Given an array L, find max among numbers between position $start$ and end (inclusive)

```c
findmax (L, start, end) {
  if (start == end)
    return  L[start]
  else {
    mid = \lfloor (start+end)/2 \rfloor
    x = findmax(L,start,mid)
    y = findmax(L,mid+1,end)
    if (x>y) return x
    else return y
  }
}
```

Time $T(n)$ taken by
findmax($L,a,a+n-1$)?

$T(1) = c_1$

$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + c_2$

Binary recursion tree with c_2 on each internal node. c_1 at leaves.

$T(n) = O($number of nodes$)$
Recursion

Given an array L, find max among numbers between position start and end (inclusive)

```java
findmax (L, start, end) {
    if (start == end)
        return L[start]
    else {
        mid = (start+end)/2
        x = findmax(L,start,mid)
        y = findmax(L,mid+1,end)
        if (x>y) return x
        else return y
    }
}
```

Time T(n) taken by findmax(L,a,a+n-1)?
T(1) = c₁
T(n) = T(⌊n/2⌋) + T(⌈n/2⌉) + c₂

Binary recursion tree with c₂ on each internal node. c₁ at leaves.
T(n) = O(number of nodes)
T(n) = O(n)
Question

Time taken by find3max(L,a,a+n) is

A. $\Theta(n)$
B. $\Theta(n \log n)$
C. $\Theta(n^2)$
D. $\Theta(n^3)$
E. None of the above

```c
find3max (L, st, en) {
    if (st == en)
        return L[st]
    else {
        mid1 = st + \lfloor (en-st+1)/3 \rfloor
        mid2 = st + 2* \lfloor (en-st+1)/3 \rfloor
        x = find3max(L,st,mid1)
        y = find3max(L,mid1+1,mid2)
        z = find3max(L,mid2+1,en)
        if (x \geq y \land x \geq z) return x
        if (y \geq x \land y \geq z) return y
        if (z \geq x \land z \geq y) return z
    }
}
```
Merging Two Sorted Lists

merge \((L_1, L_2 : \text{ascending lists}) \) {
 \(K = \text{empty-list}; X_1 = L_1; X_2 = L_2; \)
 while (\(X_1 \) not empty or \(X_2 \) not empty) {
 if (\(X_2 \) empty)
 x = pop(\(X_1 \))
 else if (\(X_1 \) empty)
 x = pop(\(X_2 \))
 else if (first(\(X_1 \)) \leq \text{first}(\(X_2 \)))
 x = pop(\(X_1 \))
 else
 x = pop(\(X_2 \))
 append(\(K, x \))
 }
 \(\text{return } K \)
}
Merging Two Sorted Lists

Maintain the invariant that a list \(K \) has a prefix of the final merged list. \(X_1, X_2 \) have the rest of \(L_1, L_2 \).

```
merge \((L_1, L_2 : \text{ascending lists})\) {
    K = empty-list; X_1 = L_1; X_2 = L_2;
    while \((X_1 \text{ not empty or } X_2 \text{ not empty})\) {
        if \((X_2 \text{ empty})\)
            x = pop(X_1)
        else if \((X_1 \text{ empty})\)
            x = pop(X_2)
        else if \((\text{first}(X_1) \leq \text{first}(X_2))\)
            x = pop(X_1)
        else
            x = pop(X_2)
        append(K, x)
    }
    return K
}
```
Merging Two Sorted Lists

- Maintain the invariant that a list K has a prefix of the final merged list.
- X₁, X₂ have the rest of L₁, L₂.
- Base case: K=empty, X₁=L₁, X₂=L₂

```plaintext
merge (L₁, L₂ : ascending lists) {
    K = empty-list; X₁ = L₁; X₂ = L₂;
    while (X₁ not empty or X₂ not empty) {
        if (X₂ empty)
            x = pop(X₁)
        else if (X₁ empty)
            x = pop(X₂)
        else if (first(X₁) ≤ first(X₂))
            x = pop(X₁)
        else
            x = pop(X₂)
        append(K, x)
    }
    return K
}
```
Merging Two Sorted Lists

Maintain the invariant that a list K has a prefix of the final merged list. X_1, X_2 have the rest of L_1, L_2.
- Base case: $K=\text{empty}$, $X_1=L_1$, $X_2=L_2$
- Inductively, move the smaller of first(X_1) and first(X_2) to the end of K

```java
merge (L_1, L_2 : ascending lists) {
    K = empty-list; X_1 = L_1; X_2 = L_2;
    while (X_1 not empty or X_2 not empty) {
        if (X_2 empty)
            x = pop(X_1)
        else if (X_1 empty)
            x = pop(X_2)
        else if ( first(X_1) \leq first(X_2) )
            x = pop(X_1)
        else
            x = pop(X_2)
        append(K,x)
    }
    return K
}
```
Merging Two Sorted Lists

- Maintain the invariant that a list K has a prefix of the final merged list. X₁, X₂ have the rest of L₁, L₂.
- Base case: K=empty, X₁=L₁, X₂=L₂
- Inductively, move the smaller of first(X₁) and first(X₂) to the end of K
- Terminating condition: Both X₁ and X₂ are empty

```plaintext
merge (L₁, L₂ : ascending lists) {
    K = empty-list; X₁ = L₁; X₂ = L₂;
    while (X₁ not empty or X₂ not empty) {
        if (X₂ empty)
            x = pop(X₁)
        else if (X₁ empty)
            x = pop(X₂)
        else if (first(X₁) ≤ first(X₂))
            x = pop(X₁)
        else
            x = pop(X₂)
        append(K, x)
    }
    return K
}
```
Merging Two Sorted Lists

- Maintain the invariant that a list \(K \) has a prefix of the final merged list. \(X_1, X_2 \) have the rest of \(L_1, L_2 \).
- Base case: \(K = \text{empty}, X_1 = L_1, X_2 = L_2 \)
- Inductively, move the smaller of first(\(X_1 \)) and first(\(X_2 \)) to the end of \(K \)
- Terminating condition: Both \(X_1 \) and \(X_2 \) are empty

Time taken (as a function of \(n = |L_1| + |L_2| \)) ?

```plaintext
merge (L_1, L_2 : ascending lists) {
    K = empty-list; X_1 = L_1; X_2 = L_2;
    while (X_1 not empty or X_2 not empty) {
        if (X_2 empty)
            x = pop(X_1)
        else if (X_1 empty)
            x = pop(X_2)
        else if (first(X_1) ≤ first(X_2))
            x = pop(X_1)
        else
            x = pop(X_2)
        append(K,x)
    }
    return K
}
```
Merging Two Sorted Lists

Maintain the invariant that a list K has a prefix of the final merged list. X₁, X₂ have the rest of L₁, L₂.

Base case: K=empty, X₁=L₁, X₂=L₂

Inductively, move the smaller of first(X₁) and first(X₂) to the end of K

Terminating condition: Both X₁ and X₂ are empty

Time taken (as a function of n = |L₁|+|L₂|)?

When finished K has n elements

```c
merge (L₁, L₂ : ascending lists) {
    K = empty-list; X₁ = L₁; X₂ = L₂;
    while (X₁ not empty or X₂ not empty) {
        if (X₂ empty)
            x = pop(X₁)
        else if (X₁ empty)
            x = pop(X₂)
        else if ( first(X₁) ≤ first(X₂) )
            x = pop(X₁)
        else
            x = pop(X₂)
        append(K,x)
    }
    return K
}
```
Merging Two Sorted Lists

Maintain the invariant that a list K has a prefix of the final merged list. X₁, X₂ have the rest of L₁, L₂.

- Base case: K=empty, X₁=L₁, X₂=L₂
- Inductively, move the smaller of first(X₁) and first(X₂) to the end of K
- Terminating condition: Both X₁ and X₂ are empty

Time taken (as a function of n = |L₁|+|L₂|) ?

When finished K has n elements

Each element gets added to K exactly once

merge (L₁, L₂ : ascending lists) {
 K = empty-list; X₁ = L₁; X₂ = L₂;
 while (X₁ not empty or X₂ not empty) {
 if (X₂ empty)
 x = pop(X₁)
 else if (X₁ empty)
 x = pop(X₂)
 else if (first(X₁) ≤ first(X₂))
 x = pop(X₁)
 else
 x = pop(X₂)
 append(K,x)
 }
 return K
}
Merging Two Sorted Lists

- Maintain the invariant that a list K has a prefix of the final merged list. X₁, X₂ have the rest of L₁, L₂.
- Base case: K=empty, X₁=L₁, X₂=L₂
- Inductively, move the smaller of first(X₁) and first(X₂) to the end of K
- Terminating condition: Both X₁ and X₂ are empty

Time taken (as a function of n = |L₁|+|L₂|) ?
- When finished K has n elements
- Each element gets added to K exactly once
- Each iteration adds exactly one element to K (in O(1) time)

```plaintext
merge (L₁, L₂ : ascending lists) {
    K = empty-list; X₁ = L₁; X₂ = L₂;
    while (X₁ not empty or X₂ not empty) {
        if (X₂ empty)
            x = pop(X₁)
        else if (X₁ empty)
            x = pop(X₂)
        else if ( first(X₁) ≤ first(X₂) )
            x = pop(X₁)
        else
            x = pop(X₂)
        append(K,x)
    }
    return K
}
```
Merging Two Sorted Lists

- Maintain the invariant that a list K has a prefix of the final merged list. X₁, X₂ have the rest of L₁, L₂.
- Base case: K=empty, X₁=L₁, X₂=L₂
- Inductively, move the smaller of first(X₁) and first(X₂) to the end of K
- Terminating condition: Both X₁ and X₂ are empty

Time taken (as a function of n = |L₁|+|L₂|) ?
- When finished K has n elements
- Each element gets added to K exactly once
- Each iteration adds exactly one element to K (in O(1) time)
- T(n) = O(n)

merge (L₁, L₂ : ascending lists) {
 K = empty-list; X₁ = L₁; X₂ = L₂;
 while (X₁ not empty or X₂ not empty) {
 if (X₂ empty)
 x = pop(X₁)
 else if (X₁ empty)
 x = pop(X₂)
 else if (first(X₁) ≤ first(X₂))
 x = pop(X₁)
 else
 x = pop(X₂)
 append(K,x)
 }
 return K
}
Graph Reachability

reachable (G: graph; s,t: nodes in G) {
 unmark all nodes in G
 M = empty-list
 mark s; insert(M, s)
 while (M not empty) {
 x := pop(M)
 if (x=t) return true
 for each neighbor y of x
 if (y unmarked) {
 mark y; insert(M, y)
 }
 }
 return false
}
Graph Reachability

Check if s, t connected

```markdown
reachable (G: graph; s,t: nodes in G) {
    unmark all nodes in G
    M = empty-list
    mark s; insert(M, s)
    while (M not empty) {
        x := pop(M)
        if (x=t) return true
        for each neighbor y of x
            if (y unmarked) {
                mark y; insert(M, y)
            }
    }
    return false
}
```
Graph Reachability

- Check if s, t connected
- Explore graph starting from s, without getting into an infinite loop

```plaintext
reachable (G: graph; s,t: nodes in G) { 
    unmark all nodes in G
    M = empty-list
    mark s; insert(M, s)
    while (M not empty) {
        x := pop(M)
        if (x=t) return true
        for each neighbor y of x
            if (y unmarked) {
                mark y; insert(M, y)
            }
    }
    return false
}
```
Graph Reachability

- Check if s, t connected
- Explore graph starting from s, without getting into an infinite loop
- Mark each element already reached

```python
reachable (G: graph; s,t: nodes in G) {  
    unmark all nodes in G  
    M = empty-list  
    mark s; insert(M, s)  
    while (M not empty) {  
        x := pop(M)  
        if (x=t) return true  
        for each neighbor y of x  
            if (y unmarked) {  
                mark y; insert(M, y)  
            }  
    }  
    return false  
}
```
Graph Reachability

- Check if s, t connected
- Explore graph starting from s, without getting into an infinite loop
 - Mark each element already reached
- If t marked, then reachable from s

```plaintext
reachable (G: graph; s,t: nodes in G) {
    unmark all nodes in G
    M = empty-list
    mark s; insert(M, s)
    while (M not empty) {
        x := pop(M)
        if (x=t) return true
        for each neighbor y of x
            if (y unmarked) {
                mark y; insert(M, y)
            }
    }
    return false
}
```
Graph Reachability

- Check if s, t connected
- Explore graph starting from s, without getting into an infinite loop
- Mark each element already reached
- If t marked, then reachable from s
- Time taken?

```plaintext
reachable (G: graph; s,t: nodes in G) {
  unmark all nodes in G
  M = empty-list
  mark s; insert(M, s)
  while (M not empty) {
    x := pop(M)
    if (x=t) return true
    for each neighbor y of x
      if (y unmarked) {
        mark y; insert(M, y)
      }
  }
  return false
}
```
Graph Reachability

- Check if s, t connected
- Explore graph starting from s, without getting into an infinite loop
- Mark each element already reached
- If t marked, then reachable from s
- Time taken?

Each edge $\{x, y\}$ inspected at most twice (As each node is inserted/popped at most once)

```plaintext
reachable (G: graph; s, t: nodes in G) {
    unmark all nodes in G
    M = empty-list
    mark s; insert(M, s)
    while (M not empty) {
        x := pop(M)
        if (x = t) return true
        for each neighbor y of x
            if (y unmarked) {
                mark y; insert(M, y)
            }
    }
    return false
}
```
Graph Reachability

- Check if s, t connected
- Explore graph starting from s, without getting into an infinite loop
- Mark each element already reached
- If t marked, then reachable from s
- Time taken?

Each edge \{x,y\} inspected at most twice (As each node is inserted/popped at most once)

\(T(|E|) = O(|E|) \)

```java
reachable (G: graph; s,t: nodes in G) {
    unmark all nodes in G
    M = empty-list
    mark s; insert(M, s)
    while (M not empty) {
        x := pop(M)
        if (x=t) return true
        for each neighbor y of x
            if (y unmarked) {
                mark y; insert(M, y)
            }
    }
    return false
}
```
Binary Search
Binary Search

Find where a desired object occurs (if at all) in a sorted list of objects
Binary Search

- Find where a desired object occurs (if at all) in a sorted list of objects
- Objects can be compared with each other (using a total ordering)
Binary Search

- Find where a desired object occurs (if at all) in a sorted list of objects
- Objects can be compared with each other (using a total ordering)
- Simple idea:
Binary Search

- Find where a desired object occurs (if at all) in a sorted list of objects
- Objects can be compared with each other (using a total ordering)
- Simple idea:
 - Check if desired object = middle one in the list
Binary Search

Find where a desired object occurs (if at all) in a sorted list of objects

Objects can be compared with each other (using a total ordering)

Simple idea:

Check if desired object = middle one in the list

If not, comparing with the middle one lets you see if it could be in the left half or the right half of the list (since the list is sorted)
Binary Search

- Find where a desired object occurs (if at all) in a sorted list of objects
- Objects can be compared with each other (using a total ordering)

Simple idea:
- Check if desired object = middle one in the list
- If not, comparing with the middle one lets you see if it could be in the left half or the right half of the list (since the list is sorted)
- Recursively search in that half
Binary Search

- Find where a desired object occurs (if at all) in a sorted list of objects
- Objects can be compared with each other (using a total ordering)

Simple idea:
- Check if desired object = middle one in the list
- If not, comparing with the middle one lets you see if it could be in the left half or the right half of the list (since the list is sorted)
- Recursively search in that half

Depth of recursion, for an n element list ≤ ⌈ log₂ n ⌉
Binary Search
Binary Search

Zeroing in on the answer by shrinking the range by half each time
Binary Search

Zeroing in on the answer by shrinking the range by half each time
Binary Search

Zeroing in on the answer by shrinking the range by half each time
Binary Search

- Zeroing in on the answer by shrinking the range by half each time
Binary Search

Zeroing in on the answer by shrinking the range by half each time
Binary Search

Zeroing in on the answer by shrinking the range by half each time
Binary Search

- Zeroing in on the answer by shrinking the range by half each time
- Traversing an implicit binary tree
Binary Search

- Zeroing in on the answer by shrinking the range by half each time

- Traversing an implicit binary tree

- Nodes contain the mid-elements of the range under them
Binary Search

- Zeroing in on the answer by shrinking the range by half each time
- Traversing an implicit binary tree
- Nodes contain the mid-elements of the range under them
Binary Search

- Zeroing in on the answer by shrinking the range by half each time

- Traversing an implicit binary tree

- Nodes contain the mid-elements of the range under them

- At each node compare the desired object with the object at the node
Binary Search

- Zeroing in on the answer by shrinking the range by half each time
- Traversing an implicit binary tree
- Nodes contain the mid-elements of the range under them
- At each node compare the desired object with the object at the node
Binary Search

- Zeroing in on the answer by shrinking the range by half each time
- Traversing an implicit binary tree
- Nodes contain the mid-elements of the range under them
- At each node compare the desired object with the object at the node
Binary Search

- Zeroing in on the answer by shrinking the range by half each time
- Traversing an implicit binary tree
- Nodes contain the mid-elements of the range under them
- At each node compare the desired object with the object at the node
Binary Search

- Zeroing in on the answer by shrinking the range by half each time
- Traversing an implicit binary tree
- Nodes contain the mid-elements of the range under them
- At each node compare the desired object with the object at the node
Binary Search

- Zeroing in on the answer by shrinking the range by half each time.
- Traversing an implicit binary tree.
- Nodes contain the mid-elements of the range under them.
- At each node, compare the desired object with the object at the node.
Binary Search

- Zeroing in on the answer by shrinking the range by half each time
- Traversing an implicit binary tree
- Nodes contain the mid-elements of the range under them
- At each node compare the desired object with the object at the node
Binary Search
Binary Search

Example: finding (up to required precision) the square root of a number $n>1$ (using only comparison and multiplication)
Binary Search

Example: finding (up to required precision) the square root of a number $n > 1$ (using only comparison and multiplication)

Initial range: $[0,n]$ (say)
Binary Search

Example: finding (up to required precision) the square root of a number $n>1$ (using only comparison and multiplication)

Initial range: $[0,n]$ (say)
Example: finding (up to required precision) the square root of a number $n>1$ (using only comparison and multiplication)

Initial range: $[0, n]$ (say)
Binary Search

Example: finding (up to required precision) the square root of a number $n \geq 1$ (using only comparison and multiplication)

Initial range: $[0, n]$ (say)

How to compare desired object (here \sqrt{n}) with middle element m?
Binary Search

Example: finding (up to required precision) the square root of a number \(n > 1 \) (using only comparison and multiplication)

Initial range: \([0, n]\) (say)

How to compare desired object (here \(\sqrt{n} \)) with middle element \(m \)?

- compare \(n \) and \(m^2 \)
Binary Search

Example: finding (up to required precision) the square root of a number \(n > 1 \) (using only comparison and multiplication)

Initial range: \([0, n]\) (say)

How to compare desired object (here \(\sqrt{n} \)) with middle element \(m \)?

- compare \(n \) and \(m^2 \)
Binary Search

Example: finding (up to required precision) the square root of a number $n > 1$ (using only comparison and multiplication)

Initial range: $[0, n]$ (say)

How to compare desired object (here \sqrt{n}) with middle element m?

- compare n and m^2
Example: finding (up to required precision) the square root of a number \(n > 1 \) (using only comparison and multiplication)

Initial range: \([0, n]\) (say)

How to compare desired object (here \(\sqrt{n} \)) with middle element \(m \)?

- compare \(n \) and \(m^2 \)
Binary Search

Example: finding (up to required precision) the square root of a number $n>1$ (using only comparison and multiplication)

Initial range: $[0, n]$ (say)

How to compare desired object (here \sqrt{n}) with middle element m?

- compare n and m^2
Example: finding (up to required precision) the square root of a number $n>1$ (using only comparison and multiplication).

Initial range: $[0, n]$ (say)

How to compare desired object (here \sqrt{n}) with middle element m?

- compare n and m^2
Example: finding (up to required precision) the square root of a number $n>1$ (using only comparison and multiplication)

Initial range: $[0,n]$ (say)

How to compare desired object (here \sqrt{n}) with middle element m?

- compare n and m^2
Binary Search

Example: finding (up to required precision) the square root of a number $n > 1$ (using only comparison and multiplication)

Initial range: $[0, n]$ (say)

How to compare desired object (here \sqrt{n}) with middle element m?

- compare n and m^2
Merge Sort
Merge Sort

.Sorting by divide-and-conquer
Merge Sort

- Sorting by divide-and-conquer
 - Split the list into two (unless a single element)
Merge Sort

- Sorting by divide-and-conquer
- Split the list into two (unless a single element)
- Sort each list recursively
Merge Sort

Sorting by divide-and-conquer

- Split the list into two (unless a single element)
- Sort each list recursively
- Merge the sorted lists into a single sorted list
Merge Sort

- Sorting by divide-and-conquer
 - Split the list into two (unless a single element)
 - Sort each list recursively
 - Merge the sorted lists into a single sorted list
- \[T(n) = 2T(n/2) + \text{time to merge} \]
Merge Sort

Sorting by divide-and-conquer

- Split the list into two (unless a single element)
- Sort each list recursively
- Merge the sorted lists into a single sorted list

\[T(n) = 2T(n/2) + \text{time to merge} \]

\[T(n) = 2T(n/2) + d \cdot n \]
[in fact, \(T(n) \leq 2T(n/2)+dn+c \)]
Merge Sort

- Sorting by divide-and-conquer
 - Split the list into two (unless a single element)
 - Sort each list recursively
 - Merge the sorted lists into a single sorted list

\[T(n) = 2T(n/2) + \text{time to merge} \]

\[T(n) = 2T(n/2) + dn \] [in fact, \(T(n) \leq 2T(n/2)+dn+c \)]

- Depth of recursion = \(O(\log n) \)
Merge Sort

- Sorting by divide-and-conquer
- Split the list into two (unless a single element)
- Sort each list recursively
- **Merge** the sorted lists into a single sorted list

\[T(n) = 2T(n/2) + \text{time to merge} \]

\[T(n) = 2T(n/2) + d \times n \ [\text{in fact, } T(n) \leq 2T(n/2)+dn+c \] \]

- Depth of recursion = \(O(\log n) \)
- \(T(n) = O(n \log n) \)
Big Number Arithmetic
Big Number Arithmetic

Usually multiplication/addition are a single operation in a CPU
Big Number Arithmetic

- Usually multiplication/addition are a single operation in a CPU
- But not possible when an integer has too many digits to fit into a processor’s registers
Big Number Arithmetic

- Usually multiplication/addition are a single operation in a CPU.
- But not possible when an integer has too many digits to fit into a processor’s registers.
- Can break up the integer into smaller pieces, and compute on them.
Big Number Arithmetic

- Usually multiplication/addition are a single operation in a CPU

- But not possible when an integer has too many digits to fit into a processor’s registers

- Can break up the integer into smaller pieces, and compute on them

 - e.g. Addition with carry: each operation works on single digit numbers (takes 3 numbers and gives two numbers)
Big Number Arithmetic

- Usually multiplication/addition are a single operation in a CPU
- But not possible when an integer has too many digits to fit into a processor's registers
- Can break up the integer into smaller pieces, and compute on them

 - e.g. Addition with carry: each operation works on single digit numbers (takes 3 numbers and gives two numbers)

 - To add two n-digit numbers: $O(n)$ operations
Big Number Arithmetic

- Usually multiplication/addition are a single operation in a CPU.
- But not possible when an integer has too many digits to fit into a processor's registers.
- Can break up the integer into smaller pieces, and compute on them.
 - e.g. Addition with carry: each operation works on single digit numbers (takes 3 numbers and gives two numbers).
 - To add two n-digit numbers: $O(n)$ operations.
- As fast as possible: need to at least read all the digits.
Big Number Arithmetic

- Usually multiplication/addition are a single operation in a CPU.

- But not possible when an integer has too many digits to fit into a processor’s registers.

- Can break up the integer into smaller pieces, and compute on them.

 - e.g. Addition with carry: each operation works on single digit numbers (takes 3 numbers and gives two numbers).

- To add two n-digit numbers: $O(n)$ operations.

 - As fast as possible: need to at least read all the digits.

 - (Remember: the number N has $O(\log N)$ digits.)
Big Number Arithmetic
Big Number Arithmetic

- Multiplication of two large numbers
Big Number Arithmetic

- Multiplication of two large numbers

 - First attempt: $x = x_0 + 2x_1$, where x_1 has one digit less
 Similarly, $y = y_0 + 2y_1$. So $x \cdot y = x_0y_0 + 2(x_0y_1 + x_1y_0) + x_1y_1$.
Big Number Arithmetic

Multiplication of two large numbers

First attempt: $x = x_0 + 2x_1$, where x_1 has one digit less

Similarly, $y = y_0 + 2y_1$. So $x \cdot y = x_0y_0 + 2(x_0y_1 + x_1y_0) + x_1y_1$.

$T(n) = T(n-1) + O(n)$ (and $T(1)=O(1)$). So $T(n) = O(n^2)$
Big Number Arithmetic

- Multiplication of two large numbers
 - First attempt: \(x = x_0 + 2x_1 \), where \(x_1 \) has one digit less
 Similarly, \(y = y_0 + 2y_1 \). So \(x \cdot y = x_0y_0 + 2(x_0y_1 + x_1y_0) + x_1y_1 \).
 - \(T(n) = T(n-1) + O(n) \) (and \(T(1)=O(1) \)). So \(T(n) = O(n^2) \)
 - Can we do better by dividing the problem differently?
Big Number Arithmetic

Multiplication of two large numbers

First attempt: $x = x_0 + 2x_1$, where x_1 has one digit less
Similarly, $y = y_0 + 2y_1$. So $x \cdot y = x_0y_0 + 2(x_0y_1 + x_1y_0) + x_1y_1$.

$T(n) = T(n-1) + O(n)$ (and $T(1)=O(1)$). So $T(n) = O(n^2)$

Can we do better by dividing the problem differently?

$x = x_0 + 2^{n/2}x_1$ where x_0, x_1 have $n/2$ digits each
(assuming n is a power of 2)
Big Number Arithmetic

Multiplication of two large numbers

First attempt: \(x = x_0 + 2 \times x_1 \), where \(x_1 \) has one digit less
Similarly, \(y = y_0 + 2 \times y_1 \). So \(x \cdot y = x_0 y_0 + 2 (x_0 y_1 + x_1 y_0) + x_1 y_1 \).

\(T(n) = T(n-1) + O(n) \) (and \(T(1)=O(1) \)). So \(T(n) = O(n^2) \).

Can we do better by dividing the problem differently?

\(x = x_0 + 2^{n/2} \times x_1 \) where \(x_0, x_1 \) have \(n/2 \) digits each
(assuming \(n \) is a power of 2)

\(x \cdot y = x_0 y_0 + 2^{n/2}(x_0 y_1 + x_1 y_0) + 2^n x_1 y_1 \), where all 4 products are of \(n/2 \) digit numbers (mult. by power of 2 and addition take \(O(n) \) time)
Big Number Arithmetic

- Multiplication of two large numbers
 - First attempt: \(x = x_0 + 2x_1 \), where \(x_1 \) has one digit less
 - Similarly, \(y = y_0 + 2y_1 \). So \(x \cdot y = x_0y_0 + 2(x_0y_1 + x_1y_0) + x_1y_1 \).
 - \(T(n) = T(n-1) + O(n) \) (and \(T(1)=O(1) \)). So \(T(n) = O(n^2) \).
 - Can we do better by dividing the problem differently?
 - \(x = x_0 + 2^{n/2}x_1 \) where \(x_0, x_1 \) have \(n/2 \) digits each (assuming \(n \) is a power of 2)
 - \(x \cdot y = x_0y_0 + 2^{n/2}(x_0y_1 + x_1y_0) + 2^nx_1y_1 \), where all 4 products are of \(n/2 \) digit numbers (mult. by power of 2 and addition take \(O(n) \) time)
 - \(T(n) = 4T(n/2) + \Theta(n) \). Still \(T(n)=\Theta(n^2) \).
Big Number Arithmetic

Multiplication of two large numbers

First attempt: \(x = x_0 + 2 \times_1 \), where \(x_1 \) has one digit less
Similarly, \(y = y_0 + 2 \times_1 \). So \(x \cdot y = x_0y_0 + 2(x_0y_1 + x_1y_0) + x_1y_1 \).

\[T(n) = T(n-1) + O(n) \text{ (and } T(1)=O(1)\text{)}. \text{ So } T(n) = O(n^2) \]

Can we do better by dividing the problem differently?

\(x = x_0 + 2^{n/2} \times_1 \) where \(x_0, x_1 \) have \(n/2 \) digits each
(assuming \(n \) is a power of 2)

\(x \cdot y = x_0y_0 + 2^{n/2}(x_0y_1 + x_1y_0) + 2^n x_1y_1 \), where all 4 products
are of \(n/2 \) digit numbers (mult. by power of 2 and addition take \(O(n) \) time)

\[T(n) = 4T(n/2) + \Theta(n). \text{ Still } T(n)=\Theta(n^2). \]

Can we do better?
Big Number Arithmetic
Big Number Arithmetic

- Multiplication of two large numbers
Big Number Arithmetic

Multiplication of two large numbers

\[x = x_0 + 2^{n/2} x_1 \] where \(x_0, x_1 \) have \(n/2 \) digits each

(assuming \(n \) is a power of 2)
Big Number Arithmetic

Multiplication of two large numbers

\[x = x_0 + 2^{n/2} \cdot x_1 \] where \(x_0, x_1 \) have \(n/2 \) digits each
(assuming \(n \) is a power of 2)

\[x \cdot y = x_0 y_0 + 2^{n/2} \left(x_0 y_1 + x_1 y_0 \right) + 2^n \cdot x_1 y_1 \]
\[= x_0 y_0 + 2^{n/2} \left[(x_0 + x_1)(y_0 + y_1) - x_0 y_0 - x_1 y_1 \right] + 2^n \cdot x_1 y_1 \]
Big Number Arithmetic

Multiplication of two large numbers

\[x = x_0 + 2^{n/2} \times x_1 \] where \(x_0, x_1 \) have \(n/2 \) digits each (assuming \(n \) is a power of 2)

\[x \cdot y = x_0 y_0 + 2^{n/2} (x_0 y_1 + x_1 y_0) + 2^n x_1 y_1 \]
\[= x_0 y_0 + 2^{n/2} [(x_0 + x_1)(y_0 + y_1) - x_0 y_0 - x_1 y_1] + 2^n x_1 y_1 \]

Only 3 multiplications (and reusing products). All of them on numbers about \(n/2 \) digits each
Big Number Arithmetic

Multiplication of two large numbers

\[x = x_0 + 2^{n/2} x_1 \] where \(x_0, x_1 \) have \(n/2 \) digits each
(assuming \(n \) is a power of \(2 \))

\[x \cdot y = x_0y_0 + 2^{n/2} (x_0y_1 + x_1y_0) + 2^n x_1y_1 \]
\[= x_0y_0 + 2^{n/2} [(x_0+x_1)(y_0+y_1) - x_0y_0 - x_1y_1] + 2^n x_1y_1 \]

Only 3 multiplications (and reusing products). All of them on numbers about \(n/2 \) digits each

\[T(n) = 3T(n/2) + O(n). T(1) = O(1). \]
Big Number Arithmetic

Multiplication of two large numbers

\[x = x_0 + 2^{n/2} \cdot x_1 \] where \(x_0, x_1 \) have \(n/2 \) digits each

(assuming \(n \) is a power of 2)

\[x \cdot y = x_0 y_0 + 2^{n/2} (x_0 y_1 + x_1 y_0) + 2^n x_1 y_1 \]

\[= x_0 y_0 + 2^{n/2}[(x_0 + x_1)(y_0 + y_1) - x_0 y_0 - x_1 y_1] + 2^n x_1 y_1 \]

Only 3 multiplications (and reusing products). All of them on numbers about \(n/2 \) digits each

\[T(n) = 3T(n/2) + O(n). T(1) = O(1). \]

Recursion tree: each level (internal or leaves) has \(3^k \) nodes, with \(n/2^k \) on each node. Level sum = \(O(n \cdot (3/2)^k) \).

\(k = 0 \) to \(\log_2 n \). (Level sum from last level dominates.)
Big Number Arithmetic

Multiplication of two large numbers

\[x = x_0 + 2^{n/2} \cdot x_1 \quad \text{where} \quad x_0, \ x_1 \ \text{have} \ n/2 \ \text{digits each} \]
(assuming \(n \) is a power of 2)

\[x \cdot y = x_0y_0 + 2^{n/2} (x_0y_1 + x_1y_0) + 2^n x_1y_1 \]
\[= x_0y_0 + 2^{n/2} [(x_0+x_1)(y_0+y_1) - x_0y_0 - x_1y_1] + 2^n x_1y_1 \]

Only 3 multiplications (and reusing products). All of them on numbers about \(n/2 \) digits each

\[T(n) = 3T(n/2) + O(n). \quad T(1) = O(1). \]

Recursion tree: each level (internal or leaves) has \(3^k \) nodes, with \(n/2^k \) on each node. Level sum = \(O(n \cdot (3/2)^k) \).
\(k = 0 \) to \(\log_2 n \). (Level sum from last level dominates.)

\[T(n) = O(n(3/2)^{\log_2 n}) = O(2^{\log_2 n} \cdot (3/2)^{\log_2 n}) = O(3^{\log_2 n}) \]
\[= O(3^{\log_3 n \times \log_2 3}) = O(n^{\log_2 3}) = O(n^{1.585...}) \]
Big Number Arithmetic

Multiplication of two large numbers

\[x = x_0 + 2^{n/2} x_1 \quad \text{where} \quad x_0, x_1 \text{ have } n/2 \text{ digits each} \]
(assuming \(n \) is a power of 2)

\[x \cdot y = x_0 y_0 + 2^{n/2} (x_0 y_1 + x_1 y_0) + 2^n x_1 y_1 \]
\[= x_0 y_0 + 2^{n/2} [(x_0 + x_1)(y_0 + y_1) - x_0 y_0 - x_1 y_1] + 2^n x_1 y_1 \]

Only 3 multiplications (and reusing products). All of them on numbers about \(n/2 \) digits each

\[T(n) = 3T(n/2) + O(n). \quad T(1) = O(1). \]

Recursion tree: each level (internal or leaves) has \(3^k \) nodes, with \(n/2^k \) on each node. Level sum = \(O(n \cdot (3/2)^k) \).

\(k = 0 \) to \(\log_2 n \). (Level sum from last level dominates.)

\[T(n) = O(n(3/2)^{\log_2 n}) = O(2^{\log_2 n} \cdot (3/2)^{\log_2 n}) = O(3^{\log_2 n}) \]
\[= O(3^{\log_3 n \times \log_2 3}) = O(n^{\log_2 3}) = O(1.585...) \]

Can do even better, but more involved